The Bargmann transform and coherent states The Schrödinger

The Bargmann transform and coherent states
The Schrödinger operator may be written as
P u(x) = u(x) + V(x)u(x), u L2(Rn),
and a simple model where the potential takes a minimum is the quantum harmonic oscillator, V(x) = x2. One
way of seeing the link between the quantum and classical picture is the action of the Schrödinger operator
on coherent states, of the form
ψz(x) = π1/4e
1
2(xz)2
for za complex number whose real part represents the position and whose complex part represents the
momentum.
The goal of the stage is to understand the Bargmann transform, a decomposition of an arbitrary function
in coherent states (analogous to the plane waves for the Fourier transform), and in doing so to understand the
Schrödinger evolution (via the Mehler formula) and the spectral decomposition of the harmonic oscillator,
following Chapter 1.6-1.7 of Harmonic Analysis in Phase Space by Folland. Other introductory resources
include
https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
https://en.wikipedia.org/wiki/Coherent_states
https://en.wikipedia.org/wiki/Mehler_kernel
La transformée de Bargmann et des états cohérents
L’opérateur de Schrödinger s’écrit comme
P u(x) = u(x) + V(x)u(x), u L2(Rn),
est un modèle simple pour un minimum du potentiel est l’oscillateur harmonique quantique, V(x) = x2. Une
façon de voir le lien entre les images quantique et classique est l’action de l’opérateur de Schrödinger sur des
états cohérents, de la forme
ψz(x) = π1/4e
1
2(xz)2
pour zun nombre complexe dont la partie réelle représente la position et la partie imaginaire représente la
vitesse.
Le but de ce stage est de comprendre la transformée de Bargmann, une décomposition d’une fonction
quelconque en états cohérents (analogues aux ondes plats pour la transformée de Fourier) et ensuite de
comprendre l’évolution associé à l’opérateur de Schrödinger (via la formule de Mehler) et la décomposition
spectrale de l’oscillateur harmonique, après Chapitres 1.6-1.7 of Harmonic Analysis in Phase Space par
Folland. Parmi d’autres ressources de base, on peut consulter
https://en.wikipedia.org/wiki/Quantum_harmonic_oscillator
https://en.wikipedia.org/wiki/Coherent_states
https://en.wikipedia.org/wiki/Mehler_kernel
1
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !