K=R C n∈N∗Mn(K)
u∈L(E)πuk
d∈L(E)n∈L(E)
u=d+n d n
Pn≥0An/n!Mn(K)
A
A, B ∈Mn(K)P∈Gln(K)
exp(0) = In(λ1, . . . , λn) exp(diag(λ1, . . . , λn)) = diag(exp λ1,...,exp λn)
exp(trig(λ1, . . . , λn)) = trig(exp λ1,...,exp λn)
A=P BP −1exp(A) = Pexp(B)p−1
det(exp A) = etr(A)
exp Mn(K)
SpC(exp(A)) = eSpC(A)
N p exp(N) = Pp−1
n=0 Nn/n!
exp(A)A A
A∈Mn(K),∃PA∈K[X] : exp(A) = PA(A)
P∈K[X]A
A A exp A
A, B ∈Mn(K) [A, B] = 0 exp(A+
B) = exp(A) exp(B)
A=0 1
0 0
B=0 0
1 0 exp(A+B)6= exp(A) exp(B)
Aexp A