Planche 1. Planche 2. Exercice 2. Soit P ∈ R[X] Planche 3.

∼ ∼
f g I a
fg a
n t 7−cos(t)et
f: [a, b]R2f(a) = f(b)=0
c]a, b[γ]a, b[f(c) = (ca)(cb)
2f00(γ)
f: [1,1] RC11,0,1g: [1,1] R
g(x)=2x4+x+f(x)
c]1,1[ g0(c)=0
PR[X]deg(P)2
P P 0
PRP0
f I f I f00
f: [1,1] RC1[1,1] ] 1,1[
f(1) = 1f(0) = 0 f(1) = 1 c]1,1[ f00(c)=0
x, y R0< x < y π/2
x/y < sin(x)/sin(y)<π
2x/y
 
cos cos(t)et=
Re(e(1+i)t)n
(cos(t)et)(n)=Re((1 + i)ne(1+i)t
(1 + i)n= 2n/2einπ/4
(cos(t)et)(n)= 2n/2etcos(t+/4)
g(x) = f(x)A
2(xa)(xb)A g(c) = 0
g(a) = g(b) = g(c) = 0 a0]a, c[g0(a0) = 0 g0(b0)=0 b0]c, b[
γ]a, b[g00(γ) = 0
g00(x) = f00(x)A f00(γ) = A
 
g C1
g g(1) = 1 g(0) = 0
g(1) = 3 g0(a) = 0 g
c]0,1[ g(c) = 1
a]1, c[g0(a)=0 g(1) = g(c)
c]1,1[ g0(c) = 0
PCn
C
P
P(X) = λ
n
Y
k=1
(Xak)
akλ
a1< . . . < an
P[ak, ak+1]k[|1, n 1|] ]ak, ak+1[P
C1RP(ak) = P(ak+1) = 0 yk]ak, ak+1[
P0(yk) = 0
n1yka1< y1< a2< . . . < yn1< anyk
P0n1P0
yk
PRλ a1, . . . , aN
a1< . . . < aN
P=λ
N
Y
k=1
(Xak)αk
αk
y1,...yN1
yk]ak, ak+1[P0(yk) = 0 akP0αk1
P0ykN1xk
αk1N1 + PN
k=1 αk1 = N1N+PN
k=1 αk=n1
P0n1
P0P0R
 
f C1a]1,0[ f0(a) = f(0)
f(1)/(0 (1)) = 1 b]0,1[ f0(b) = f(1) f(0)/(1 0) = 1
f0c]a, b[f00(c) = 0
f0(a) = f0(b)
0
f(t) = sin(t)/t ]0, π/2[ x, y R
0< x < y < π/2
2
πf(x)< f(y)< f(x)
f
f
f0(t) = tcos(t)sin(t)
t2
A(t) = tcos(t)sin(t)
[0, π/2[ A0(t) =
tsin(t)0A(t)<0t6= 0 A A(0) = 0
A(t)<0f0(t)<0f
f(t)1t0f(t)2 t π/2
0< x < y < π/2
2 < f(y)< f(x)<1
f(y)< f(x)f(y)
f(x)> f(y) 0 < f(x)<1
f(y)
f(x)>2
πx/y < sin(x)/sin(y)<π
2x/y
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !