Etude des circuits linéaires en régime sinusoïdal permanant

Etude des circuits linéaires en régime sinusoïdal permanent
Pourquoi le régime sinusoïdal ?
La théorie de Fourier aboutit à la conclusion que tous les signaux périodiques peuvent être
décomposés en somme de signaux égaux :



 , ω = 
.
Conséquence
En connaissant le comportement en régime sinusoïdale, on peut connaitre le comportement
en n’importe quel régime.
Courant électrique
Définition
L’intensité d’un courant à travers une surface S est égale à la quantité de charge électrique
qui traverse S par unité de temps.
i = 
 avec dérivée partielle, i en Ampère (A), q en coulomb (C) et t en seconde.
Théorème
La charge électrique ne peut être ni créée, ni détruite : la conservation de la charge
électrique est une loi fondamentale de la physique.
Potentiel et tension
Définition
La tension UAB est égale à la différence de potentiel entre les points A et B.
UAB = VA VB
Théorème
Les tensions dans un circuit suivent une loi d’additivité.
UAB = UAC + UCD + UDB
Théorème
Sur un circuit, un point peut être décrété arbitrairement à un potentiel nul c’est la masse
notée M généralement. Alors le potentiel en un point est VA = UAM.
Eléments de base
Dipôle
C’est un composant constitué de 2 bornes.
Si le fonctionnement du dipôle ne dépend pas de la source du courant, il est symétrique ;
dans le cas contraire, il est dissymétrique.
Multi-pôles
C’est un composant constitué de plus d’une paire de bornes.
En particulier de nombreux composants peuvent être représentés par des quadripôles avec
une paire de bornes pour l’entrée et une paire de bornes pour la sortie.
Nœud
Un nœud est une jonction entre au moins 3 fils.
Branche
Une branche est constituée par un ensemble de dipôles montés en série entre 2 nœuds.
Maille
Une maille est u ensemble de branches formant un contour fermé que l’on peut parcourir en
ne passant qu’une fois par chaque nœud intermédiaire.
La résistance
Elle est caractérisée par sa résistance R en ohm () ou sa conductance G =
en siemens
(S)
Instantanées u(t) = Ri(t) ou i(t) = Gu(t)
Efficaces U = RI ou I = GUeff avec Ueff = 
Complexes u = Ri ou i = Gu
Z = R : impédance complexe de la résistance en ohm (Ω).
Le condensateur
Il est caractérisé par sa capacité C en Farad (F)
Instantanées i(t) = C 
 ou u(t) =

Efficaces si u(t) = Ueff cos(ωt + φ) alors i(t) = CωUeff cos(ωt + φ +
)
Complexes i = jCωu
Z =
 : impédance complexe du conducteur.
L’inductance
Elle est caractérisée par son inductance L en Henri (H)
Instantanées u(t) = L 
 ou i(t) =

Efficaces si i(t) = Ieff cos(ωt + φ) alors u(t) = LωIeff cos(ωt + φ +
) et Ieff = 

Complexes u = jLωi
Z = jLω : impédance complexe de l’inductance.
Lois de Kirchhoff
Loi des nœuds
Pour un nœud donné, la somme algébrique des courants entrants ij et égale à la somme
algébrique des courants sortants ik.
Loi des mailles
Dans une maille quelconque d’un réseau, la somme algébrique des différences de potentiel
le long de la maille est constamment nulle.
 
Théorèmes
Théorème
Soit N dipôles d’impédances complexes zi respectivement :
L’impédance équivalente de la mise en série de ces dipôles est :
Zeq =

L’impédance équivalente de la mise en parallèle de ces dipôles est :


.
Théorème de superposition
L’intensité du courant circulant dans une branche (respectivement la tension de la branche)
d’un réseau contenant plusieurs branches est égale à la somme algébrique des intensités
(respectivement tensions) créées dans cette branche par chaque générateur supposé seul
(les autres étant éteints). Il y a autant de cas à superposer que de générateurs intervenant
dans le réseau.
Théorème de Thévenin
Propriété électronique, qui établit qu’un réseau électrique linéaire vu de 2 points est
équivalent à un générateur parfait dont la tension est égale à la différence de potentiels à
vide entre 2 ponts, en série avec une résistance égale à celle que l’on mesure entre les
points lorsque les générateurs sont rendus passifs.
Il sert à modéliser des circuits électriques complexes et à les réduire en circuits électriques
très simples. Il est particulièrement adapté dès lors que la charge prend plus d’une valeur.
La tension de Thévenin :
Tension entre les bornes de la charge lorsque celle-ci est déconnectée (tension à vide).
La résistance de Thévenin :
Résistance mesurée entre les bornes de la charge lorsque celle-ci est déconnectée avec
les sources de tension remplacées par un court-circuit et les sources de courant par un
circuit ouvert.
Théorème de Norton
Equivalent du théorème de Thévenin mais pour les intensités.
Le théorème de Norton pour les réseaux électriques établit que tout circuit résistif est
équivalent à une source de courant idéale I, en parallèle avec une simple résistance.
Le courant de Norton est le courant entre les bornes de la charge lorsqu’elle est court-
circuitée
La résistance de Norton est celle mesurée entre les bornes de la charge lorsque celle-ci
est déconnectée avec les sources de courant par un circuit ouvert et les sources de
tensions par un court-circuit.
Equivalence Thévenin-Norton
Les 2 théorèmes étant équivalents, on a les relations suivantes :
RTh = RNo
ETh = RTh INo.
Théorème de Millman
Dans une réseau électrique de branches en parallèle, comprenant chacune un générateur de
tension parfait en série avec un élément linéaire, la tension aux bornes des branches est
égale à la somme des forces électromotrices respectivement multipliées par l’admittance de
la branche, le tout divisé par la somme des admittances.




1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !