{x0, u(x0), . . . , un−1(x0)}
E u n 0
C(u) = R[u]
x∈Eiu(v(x)) = v(u(x)) = v(λix) = λiv(x)v(x)∈EiEi
v
x∈Ei
vi(ui(x)) = vi(u(x)) x∈Ei,
=v(u(x)) Eiu,
=u(v(x)) v∈ C(u),
=u(vi(x)), vi(x)∈Eiv(Ei)⊂Ei,
=ui(vi(x)).
vi◦ui=ui◦vivi∈ C(ui)
Φv∈ C(u)vi
viC(ui)
16i6p α, β ∈Rv, w ∈ C(u) (αv +βw)|Ei=α(v|Ei) + β(w|Ei)
Φ(αv +βw)=(α(v|E1) + β(w|E1), . . . , α(v|Ep) + β(w|Ep)),
=α(v|E1, . . . , v|Ep) + β(w|E1, . . . , w|Ep),
=αΦ(v) + βΦ(w).
Ψ : C(u1)× · · · × C(up)→ C(u)
(v1, . . . , vp)7→ Pp
i=1 evi
evi∈ L(E)evi(x) = vi(x)x∈Eievi= 0 eviviL(E)
E=Lp
i=1 EiΨ
Φ◦Ψ = IdC(u1)×···×C(up)Ψ◦Φ = IdC(u)Φ
Ψ
Eiu λix∈Eiui(x) = u(x) = λix
uiλiui=λiidEui
EiC(ui) = L(Ei)
(C(ui)) = (L(Ei)) = ( Ei)2=n2
i.
C(u)C(u1)× · · · × C(up)
(C(u)) = (C(u1)× · · · × C(up)) =
p
X
i=1
(C(ui)) =
p
X
i=1
n2
i.
u
u p λi
Mu(X) = (X−λ1)· · · (X−λp).
a0, . . . , an−1∈R
p−1
X
k=0
akuk= 0.
akak
p−1Pp−1
k=0 akXk
u Mup
ak{Id, u, . . . , up−1}