c
Éditions H&K Publié dans les Annales des Concours 1/22
Centrale Physique 1 PC 2002 — Corrigé
Ce corrigé est proposé par David Chapot (ENS Lyon) ; il a été relu par Arnaud
Gossart (Professeur en CPGE) et Stéphane Ravier (Professeur en CPGE).
Le sujet porte sur l’étude de la propagation des ondes électromagnétiques et sur
l’effet Faraday dans un milieu diélectrique. Il est composé de deux parties dont la
deuxième dépend assez largement de la première.
Dans la première partie du problème, on s’intéresse à la propagation des ondes
électromagnétiques dans un milieu diélectrique isotrope. On rappelle d’abord
la forme des équations de Maxwell dans un tel milieu et on introduit sa sus-
ceptibilité diélectrique χedont on analyse l’origine du caractère complexe et
de la dépendance par rapport à la fréquence. Puis on considère le modèle de
l’électron élastiquement lié qui fournit une expression analytique simple de χe.
La deuxième partie est consacrée à l’étude de l’effet Faraday dans un milieu
diélectrique. La présence d’un champ magnétique selon la direction de propaga-
tion de l’onde introduit une anisotropie dans le diélectrique que l’on traite par
la matrice susceptibilité, généralisation de la susceptibilité (scalaire) introduite
dans la première partie. L’effet Faraday se traduit par l’apparition d’une diffé-
rence de vitesse de propagation entre deux ondes polarisées circulaires gauche
et droite, ce qui a pour effet la rotation du plan de polarisation d’une onde
polarisée rectilignement. Enfin, on étudie une application de l’effet Faraday à
la mesure de courants électriques de grande intensité.
Ce problème est de difficulté et de longueur très raisonnables. La première partie
n’est ni plus ni moins qu’une question de cours et dans la deuxième partie, le candidat
peut se laisser guider par l’énoncé très détaillé jusqu’à la question II.B.3 à partir de
laquelle il doit davantage faire preuve d’initiative. La partie II.C est la plus délicate
de cette épreuve car elle nécessite une analyse des longues explications préliminaires
et une réflexion physique approfondies.
Les notions requises concernent la propagation des ondes électromagnétiques dans
les milieux diélectriques et le modèle de l’électron élastiquement lié.
Téléchargé gratuitement sur www.Doc-Solus.fr .
c
Éditions H&K Publié dans les Annales des Concours 2/22
Indications
Partie I
I.A.2.c Écrire que la charge totale est égale à la charge libre plus la charge de
polarisation. De même, écrire que le courant total est égal au courant libre
auquel on ajoute le courant de polarisation et le courant d’aimantation.
I.A.4.b Introduire de façon ad hoc un modèle du type τd
P
dt+
P=χe0
Epour
traduire la non instantanéité de la réponse du milieu à son excitation par
un champ électrique. Constater que le caractère complexe non réel de χeest
dû à la non-nullité de τ.
I.A.4.d Dire qu’un milieu usuel est absorbant et en déduire, selon le sens de propa-
gation de l’onde, le signe de k2.
I.A.4.e Écrire que l’énergie volumique dissipée par le milieu vaut D
P·
EE.
I.B.1.b Pour justifier le fait que la force magnétique due à l’onde est négligeable
devant la force électrique pour les électrons non relativistes, se rappeler que
k
Bkest de l’ordre de k
Ek
c.
I.B.3 Reconnaître une fonction analogue à celle étudiée pour la sonance en in-
tensité d’un filtre R-L-C.
Partie II
II.A.3.a Résoudre le système en Px,Pyet Pzen fonction de Ex,Eyet Ez.
II.A.4.c Écrire que les opérateurs [χe]et
t commutent.
II.A.4.d La solution du système d’équations est non triviale si et seulement si le
déterminant du système est nul. Les vecteurs propres (Ex,Ey)sont les po-
larisations qui se propagent sans déformation dans le milieu.
II.B.3.a Écrire que les polarisations circulaires gauche et droite se propagent à des
vitesses de propagation c
ng
et c
nd
différentes.
II.B.3.b Symétriser l’expression de
Een factorisant par exp jnd+ng
2
ωz
cjωt
.
Reconnaître alors l’expression d’une onde polarisée rectilignement dont le
plan de polarisation a tourné d’un angle α(z) = ndng
2
ωz
c.
II.B.3.e Faire attention au sens de la déviation suivant le sens de propagation de
l’onde !
II.C.1 Les deux ondes n’interfèrent qu’en présence de l’analyseur car, dans le cas
contraire,
u1(M) ·
u2(M) = 0. Pour calculer l’effet de l’intégrateur sur les
deux ondes, noter que ω1τ,ω2τ1bien que |ω1ω2|τ1.
II.C.4.b L’onde 1, polarisée circulaire gauche, se déplace dans le sens opposé à
Baà
la vitesse de propagation c/ndet non c/ng. Exprimer ensuite la différence
ndngen fonction de la constante de Verdet et conclure.
Téléchargé gratuitement sur www.Doc-Solus.fr .
c
Éditions H&K Publié dans les Annales des Concours 3/22
I. Ondes électromagnétiques dans
un milieu diélectrique
I.A Propagation dans un milieu diélectrique
I.A.1 Dans le vide, les équations de Maxwell s’écrivent :
div
E = ρT
ε0
div
B = 0
rot
E =
B
t
rot
B = µ0
T+µ0ε0
E
t
ρTet
Tsont les densités volumiques de charges et de courants totaux au point et
à l’instant de l’étude.
Dans le vide, les densités volumiques de charges et de courants totaux sont
égaux aux densités volumiques de charges et de courants libres ρet
car il
n’y a ni charges de polarisation ni courants de polarisation ou d’aimantation :
ρT=ρet
T=
I.A.2.a
P(M, t)et
M(M, t)représentent les moments dipolaires électrique et ma-
gnétique du matériau par unité de volume au point Mà l’instant t.
Un moment dipolaire électrique s’exprime en C.m (conformément à la relation
p=q
dqest une charge et dune distance). Par conséquent, l’unité de
P(M, t)
est le C.m2.
De même, un moment dipolaire magnétique s’exprime en A.m2d’après la défini-
tion
m= I
Sdu moment dipolaire magnétique d’une boucle de courant de surface
Sparcourue par un courant I. Par conséquent, l’unité de
M(M, t)est l’A.m1.
I.A.2.b D’après les résultats du cours,
ρP(M, t) = div
P(M, t)
P(M, t) =
P
t (M, t)
a(M, t) =
rot
M(M, t)
Le programme des classes de PC exige que les candidats sachent montrer que
ρP(M, t) = div
P(M, t)du point de vue de l’expression du champ électrique
créé par un diélectrique en dehors de lui-même (démonstration fondée sur
l’approximation dipolaire). Cette expression est aussi valable du point de
vue du champ électrique créé à l’intérieur du matériau (où l’approximation
dipolaire n’est plus valable) mais cette démonstration est hors programme et
le résultat admis.
Téléchargé gratuitement sur www.Doc-Solus.fr .
c
Éditions H&K Publié dans les Annales des Concours 4/22
I.A.2.c La densité de charges totale est égale à la densité de charges libres plus
la densité de charges de polarisation. De même, le courant total est égal au courant
libre auquel on ajoute le courant de polarisation
Pet le courant d’aimantation
a.
Par conséquent, les équations de Maxwell-Gauss et de Maxwell-Ampère s’écrivent
div
E = ρ+ρP
ε0
rot
B = µ0
+
P
t +
rot
M+ε0
E
t !
I.A.2.d On définit les vecteurs déplacement électrique
D(M, t)et excitation ma-
gnétique
H(M, t)par
D(M, t) = ε0
E (M, t) +
P(M, t)
H (M, t) =
B
µ0
(M, t)
M(M, t)
I.A.2.e Des questions I.A.2.c et I.A.2.d, on déduit les équations de Maxwell vérifiées
par
E (M, t),
D(M, t),
H(M, t)et
B (M, t):
div
D = ρ
div
B = 0
rot
E =
B
t
rot
H =
+
D
t
I.A.3.a Le caractère isolant du milieu signifie que
=
0. Dans un milieu non
chargé, ρ= 0 (mais ρPpeut être non nul !). Enfin, un milieu dont les propriétés
magnétiques sont négligeables est caractérisé par
M=
0ou, de façon équivalente,
par
H =
B0. En définitive,
= 0 ρ= 0
M=
0
I.A.3.b Dans un milieu isolant, non chargé, aux propriétés magnétiques négli-
geables, les équations de Maxwell se réduisent à
div
D = 0
div
B = 0
rot
E =
B
t
rot
H =
D
t
Téléchargé gratuitement sur www.Doc-Solus.fr .
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !