(ϕ1, . . . , ϕn)E∗E ϕi=ei∗
(ϕ(i))
(x1, . . . , xn+1)R(y1, . . . , yn+1)
R∀i, P (xi) = yi
(y1, . . . , yn+1) (x1, . . . , xn+1)
Pj(x) = Pyjlj(x)ljRn[X]∗
xi
lj(x) = Q
i6=j
X−xi
xj−xi
Q(xi) = yj
P R R ∈R[X]
x∈E f ∈E∗f(x)X⊥=
{f∈E∗|∀x∈X, f (x)=0}E∗X◦={x∈E|∀f∈Y, f(x)=0}
A1⊂A2⇒A⊥
2⊂Ab
1ot A1⊂A2⇒A2◦⊂A1◦X⊥=¯
X⊥= (vectX)⊥X⊥
E∗(F+G)⊥=F⊥∩G⊥(F∩G)⊥=F⊥+G⊥ ◦ J(F◦) = F⊥
A⊥◦ =A A◦⊥=A dimF +dimF ⊥=E dimF +dimF ◦=E
A=E
∈L(E, F )
tf f ∈E∗7→ fu
F∗E∗
v(y(x)) = y(u(x)).
t(uv) =tvtu(tu)−1=t(u−1)J(u) =tt u Kertu=
Im(u)⊥, Imtu=Ker(u)⊥tu
G⊥tu
E B0B∗B0∗MB,B0(u) =t
(MB0∗,B∗(tu)) MB(u) =t(MB∗(tu))
B C B∗C0∗tP−1MC0∗(u) =tPtMB(u)P
E∗
(e1, e2, e3) (2e∗
1+e∗
2+e∗
3,−e∗
1+ 2e∗
3, e∗
1+ 3e∗
2)
1/13 ∗(6e1−2e2+ 3e3,−3e1+e2+ 5e3,−2e1+ 5e2−e3)
tu
xtu
(Kx)◦
E
∈L(E)P1|P2. . . |P r
Pi