Probabilités élémentaires – HLMA 311
TD n˚6 : Convergence des suites de variables aléatoires
Exercice 1. (*) Soit Xune variable aléatoire de loi B(100,1/2). Calculer P(X < 55) en utilisant
l’approximation normale.
Exercice 2. (*) Soit Xune variable aléatoire de loi P(36). Calculer P(X30) en utilisant l’ap-
proximation normale.
Exercice 3. (*) Soit Xune variable aléatoire de loi B(60,0.6). Calculer P(X= 40) en utilisant
d’abord la formule exacte et la formule de Stirling, puis en utilisant l’approximation normale.
Exercice 4. (**) Un centre de transfusion sanguine doit relancer une catégorie de donneurs pour
un don exceptionnel. L’établissement a en effet besoin de 340 dons supplémentaires. On considère
que chaque donneur contacté a une probabilité 0.7de faire ce don. Sachant que la relance est très
onéreuse, le centre de transfusion contancte npersonnes, avec n340. Soit Ynla variable aléatoire
correspondant au nombre de personnes contactées se déplaçant pour faire ce don exceptionnel.
1. Quelle est la loi de Yn?
2. On considère ici que n= 500.
a) Par quelle loi continue peut-on approcher la loi de Yn350
105 ?
b) Déterminer la probabilité pour que plus de 20 personnes se soient déplacées inutilement.
c) Avec quelle probabilité manquera-t-il au moins 20 dons ?
3. On s’intéresse au nombre minimal nde personnes à contacter pour limiter à 5% la probabilité
qu’il manque des donneurs. Quelle équation doit vérifier n? En déduire sa valeur.
Exercice 5. (**) Démontrer, en utilisant le théorème limite central, que
lim
n+exp(n)
n
X
k=0
nk
k!=1
2.
Exercice 6. (*) Soit (Xn)nNune suite de variables aléatoires indépendantes de même loi admet-
tant un moment d’ordre deux. On définit, pour tout nN, la variable aléatoire Sn:
Sn=Pn
j=1 XjnE(X1)
pnV(X1).
Comparer, pour k= 1,2,3, les renseignements numériques fournis sur la probabilité P(|Sn| ≥ k)par
le théorème limite central, puis par l’inégalité de Bienaymé-Tchebichev.
Exercice 7. (**) Soit Xune variable aléatoire de moyenne inconnue met de variance σ2. Soit
(Xn)nNune suite de variables aléatoires indépendantes de même loi que X: on dit que (X1,··· , Xn)
est un échantillon de taille nde X. On estime la moyenne mpar la variable aléatoire ¯
Xn=
1
nPn
j=1 Xj.
1. Justifier l’approximation, pour α > 0et ngrand :
P(|¯
Xnm| ≥ α)1Φn
σαΦn
σα
Φ(.)est la fonction de répartition de la loi normale standard.
2. Quelle est la taille minimum de l’échantillon pour que, α > 0et β]0,1[ étant fixés, on ait :
P(|¯
Xnm| ≥ α)β.
On traitera l’application numérique : σ= 3,α= 0.05σet β= 0.05. On rappelle que
Φ1(0.975) = 1.96.
1
Exercice 8. (**) On veut estimer le pourcentage pde réponses positives à un référendum. Pour
cela, on effectue un sondage sur npersonnes et on estime ppar la fréquence relative Fnde oui sur
les personnes sondées. On cherche n0, plus petit entier ntel que la probabilité que Fnne diffère
de pde plus de α > 0soit inférieure à β]0,1[. On traitera l’application numérique : β= 0.05 et
α= 0.01. Par combien est divisée n0si on choisit maintenant α= 0.05 ?
Exercice 9. (**) Soixante personnes veulent retirer de l’argent au guichet d’une poste. La somme
moyenne demandée par chaque personne est de 50 euros, avec un écart-type de 30 euros. Les sommes
demandées par chaque personne sont indépendantes (et de même loi). Combien d’argent doit avoir
le guichet à sa disposition pour que, avec une probabilité supérieure à 0.95, les 60 personnes retirent
la somme qu’elles souhaitent ?
Exercice 10. (**) Pour un joueur, la probabilité de doubler sa mise à la roulette est de 18
37 et celle
de perdre sa mise de 19
37 . On considère que la mise d’un joueur à une partie est d’un euro. Quel est
le nombre minimum n0de parties qui doivent être jouées quotidiennement pour que le casino ait
une probabilité de 0.5de gagner 1000 euros par jour ? Quelle est la probabilité d’une perte globale
pour le casino durant ces n0parties ?
Exercice 11. (**) Chaque jour, dans une certaine ville, 100 personnes ont besoin d’un examen
radioscopique. Pour préserver le libre choix, ncentres d’imagerie sont installés dans cette ville. On
admet que les patients choisissent indifféremment l’un ou l’autre centre d’imagerie. Soit Nle nombre
de clients journaliers dans un centre d’imagerie choisi au hasard.
1. Quelle est la probabilité qu’un client choisisse le centre d’imagerie considéré ?
2. Montrer que Npeut s’écrire N=P100
i=1 Xi, où les (Xi)1insont des variables aléatoires indé-
pendantes et distribuées suivant la loi de Bernoulli de même paramètre pque l’on déterminera.
3. Quelle est la loi de N?
4. On donne que si Zsuit la loi normale centrée réduite, alors P(Z2) = 0.98. En utilisant le
théorème de la limite centrale, déterminer quelle capacité c(n)chaque centre d’imagerie doit
avoir pour être capable de répondre à la demande avec une probabilité de 98% ? Cas où n= 2,
n= 3,n= 4.
5. Quel est le coût de la concurrence : quelle surcapacité s(n)la concurrence entraîne-t-elle par
rapport à une situation où chaque centre se verrait affecter un même nombre de clients ? Cas
n= 2,n= 3,n= 4.
Exercice 12. (***) Un automobiliste emprunte tous les jours le même trajet qui comporte un feu
tricolore pour se rendre à son travail. Comme le trajet est peu encombré, lorsque le feu est rouge,
l’automobiliste peut redémarrer dès que le feu passe au vert. Mais pour faire passer le temps, il se
demande quelle est la durée θpendant laquelle le feu reste rouge. On note (Xi)1inses durées
d’attente successives au feu lorsque celui-ci est rouge et on suppose ces variables indépendantes et
distribuées suivant la loi uniforme U([0, θ]). Pour n1, on note Zn= max1inXi.
1. Calculer la fonction de répartition de Zn. En déduire sa densité.
2. Calculer l’espérance et la variance de Zn.
3. Pour estimer le paramètre θ, on utilise l’estimateur ˜
Zn=aZn, où aest un réel tel que ˜
Znsoit
un estimateur sans biais de θ, i.e. E(˜
Zn) = θ. Quelle est la valeur de a? En déduire la variance
de ˜
Zn.
4. Montrer, en utilisant l’inégalité de Bienaymé-Tchebichev, que ˜
Znconverge en probabilité vers
θ.
5. Pour estimer le paramètre θ, on peut aussi utiliser l’estimateur ˜
Yn=b¯
Xn, où ¯
Xn=1
nPn
i=1 Xi
et best un réel tel que ˜
Ynsoit un estimateur sans biais de θ. Quelle est la valeur de b? En
déduire la variance de ˜
Yn.
6. Montrer, en utilisant la loi faible des grands nombres, que ˜
Ynconverge en probabilité vers θ.
7. Quel estimateur de θvaut-il mieux utiliser ? ˜
Znou ˜
Yn?
2
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !