A∈ Mn(K)u∈ L(Kn)Kn
A
HKnu|H=IdHIm (u−Id)⊂H.
A H
Knu|H=IdHu
A
(ei)1≤i≤nKn
i̸=j u (ej) = ej+λeiu(ek) = ekk̸=j. H
{ek|1≤k≤n, k ̸=j}, u|H=IdH.(u−Id) (ej) = λei∈H,
Im (u−Id)⊂H.
HKnu|H=IdHIm (u−Id)⊂
H, u (x) = x x ∈H, H ⊂ker (u−Id) ker (u−Id) = H
ker (u−Id) = Kn.
ker (u−Id) = Kn, u =Id A =In
ker (u−Id) = H, u 1
n−1u χu(X) = (X−1)n−1(X−λ).
λ̸= 1, x /∈H u (x) = λx (u−Id) (x) = (λ−1) x /∈H,
Im (u−Id)⊂H. λ = 1 n u
u̸=Id. u
Knu Tn,n−1(1)
A
A
(ei)1≤i≤nKn, j
λ∈K∗u(ej) = λeju(ek) = ekk̸=j. H
{ek|1≤k≤n, k ̸=j}, u|H=IdHu
HKnu|H=IdHu
u1n−1
λ̸= 0. u Dn(λ)A
Ai(λ) = Di(λ)A1≤i≤n
Aij (λ) = Tij (λ)A1≤i̸=j≤n
A′
j(λ) = ADj(λ) 1 ≤j≤m
A′
ij (λ) = ATij (λ) 1 ≤i̸=j≤m
Di(λ)
i λ
Dj(λ)
j λ