E, L(E)E GL (E)
E.
E, EE,
n= dim (E).
n1,Mn(R)n
GLn(R)Mn(R).
Id In
(E, h· | ·i)n1kxk=phx|xi
Rn
(x, y)Rn×Rn,hx|yi=tx·y=
n
X
k=1
xkyk
X E
X={yE| ∀xX, hx|yi= 0}
F E {0},
F
F E
F E, E =FF.
Sn(R) = {A∈ Mn(R)|tA=A}n
A∈ Mn(R),(x, y)Rn×Rn,hAx |yi=x|tAy®
hAx |yi=t(Ax)y=txtAy =x|tAy®
A∈ Sn(R)⇔ ∀(x, y)Rn×Rn,hAx |yi=hx|Ayi
hAx |yi=hx|Ayix, y, hx|Ayi=hx|tAyi
h· | ·i Ay =tAy y,
A=tA.
` E, a E
xE, ` (x) = hx|ai.
ϕ a E ϕ (a)
xE, ϕ (a) (x) = hx|ai
h· | ·i ϕ(a)E,
h· | ·i ϕ a ϕ
hx|ai= 0 xE, a = 0
h· | ·i E Eϕ
`EaE ` =ϕ(a),
u∈ L(E),
u∈ L(E)
(x, y)E2,hu(x)|yi=hx|u(y)i
yE, x 7→ hu(x)|yi
E, u(y)Ehu(x)|yi=hx|u(y)ixE.
uE E
u. y, z E λ, µ
R, x E
hu(x)|λy +µzi=λhu(x)|yi+µhu(x)|zi
=λhx|u(y)i+µhx|u(z)i
=hx|λu(y) + µu(z)i
λu(y) + µu(z) = u(λy +µz)u(λy +µz).
uu.
B= (ei)1inE u
E A uBtA.
A= ((aij))1i,jnuB
u(ej) =
n
X
i=1
aijei(1 jn)
i, j 1n
aij =hu(ej)|eii
A=¡¡a
ij¢¢1i,jnuB, i, j
1n
a
ij =hu(ej)|eii=hej|u(ei)i=aji
A=tA.
A= (aij)1i,jnu
i, j 1n
aij =hu(ej)|eii
aii =hu(ei)|eii
Tr (u) =
n
X
i=1 hu(ei)|eii
u
aij =aji =hu(ei)|eji
u, v L(E),
(u)=u.
(uv)=vu.
uGL (E), uGL (E) (u)1= (u1).
ker (u) = (Im (u))Im (u) = (ker (u)).
rg (u) = rg (u).
u
E
xker (u)z=u(y)Im (u),
hx|zi=hx|u(y)i=hu(x)|yi=h0|yi= 0
x(Im (u)).ker (u)(Im (u)).
x(Im (u))yE,
hu(x)|yi=hx|u(y)i= 0
u(x) = 0, x ker (u).
ker (u) = (Im (u)).
Im (u)(ker (u))
dim (Im (u)) = ndim (ker (u)) = ndim ³(Im (u))´
= dim (Im (u)) = ndim (ker (u)) = dim ³(ker (u))´
Im (u) = (ker (u)).
rg (u) = rg (u)
rg ( tA) = rg (A)
A.
u∈ L(E)u=u.
S(E)E.
u S (E)u=u⇔ ∀(x, y)E2,hu(x)|yi=hx|u(y)i
S(E).
u∈ L(E)
E
BE u ∈ L(E), A
B.
u u=utA=A A ∈ Sn(R).
A∈ Sn(R), X x EB,
x, y E
hu(x)|yi=t(AX)Y=tXtAY =tX(AY ) = hx|u(y)i
u S (E).
A∈ Sn(R), u
S(Rn).
S(E)L(E)n(n+ 1)
2.
S(E)L(E)
Sn(R)u7→ A, A u
E
Sn(R)Mn(R)
n(n+ 1)
2, ϕ :Sn(R)Rn(n+1)
2
A= ((aij))1i,jn∈ Sn(R), ϕ (A) = (aij)1ijn
(Eij)1i,jnMn(R)
Eij = ((δipδqj))1p,qn
δrs
A=X
1i,jn
aijEij =
n
X
i=1
aiiEii +X
1i<jn
(aijEij +ajiEji)
=
n
X
i=1
1
2aii (2Eii) + X
1i<jn
aij (Eij +Eji)
(Eij +Eji)1ijnSn(R).
dim (Sn(R)) = card (Eij +Eji)1ijn=n(n+ 1)
2.Sn(R)
n(n+ 1)
2.
u S (E), u +u, uu uu
S(E).huux |xi=ku(x)k2huu(x)|xi=ku(x)k2,
uu uuS+(E)
u S (E), up S (E)p vuv S (E)
v∈ L(E).
A=µ1 1
1 2 B=µ1 2
2 1 S2(R)AB =µ3 3
5 4 /∈ S2(R).
A=µa b
b c A0=µa0b0
b0c0S2(R),
(1,2) (2,1) AA0b12 =ab0+bc0b21 =a0b+b0c
b12 6=b21.
u, v E,
uv u v
u, v
uv
u, v u v x, y
E, huv(x)|yi=hx|uv(y)i,hv(x)|u(y)i=hu(x)|v(y)i,
huv(x)|yi=hvu(x)|yiuv(x) = vu(x)xRn,
uv=vu.
u S (E).ker (u) Im (u)
E= ker (u)
Im (u)
xker (u)z=u(y)Im (u),
hx|zi=hx|u(y)i=hu(x)|yi=h0|yi= 0
1 / 22 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !