B(r/2,1+3r/2)
B(1,2r)
B(-1,r)
b
a
Ar
δ(r) = supx,y∈Ar|x−y|= 4r, r ≥2,2 + 3r, r ≤2
δ(r) = diamAr= diam ¯
Ar
diamAr≤diam ¯
ArAr⊂¯
Ara, b ∈¯
Ardiam ¯
Ar=|a−b|¯
Ar
(C,|.|) (x, y)→ |x−y|anbnAr
a b diamAr≥ |an−bn| → |a−b|= diam ¯
ArdiamAr≥diam ¯
Ar
r≥2¯
B(−1, r)⊂¯
B(1,2r)¯
Ar=¯
B(1,2r) diam ¯
Ar= 4r
r≤2a=−1−r b = 1 + 2r¯
Ar=¯
B(−1, r)∪¯
B(1,2r)⊂¯
B(r/2,1+3r/2)
ab a b
¯
Arab ¯
Ardiam ¯
Ar= 2 + 3r
H−={(x, y)∈R2tel que x < −1/3}H+={(x, y)∈R2tel que x > 1/3}
r < 2/3, B(−1, r)⊂H−B(1,2r)⊂H+Ar
r= 0 B(−1, r) = ∅A0={1}
r≥2/3ArS= [−1,1] B(−1, r)¯
B(1,2r)
Ar= ( ¯
B(−1, r)∪S)∪¯
B(1,2r)
f:l∞→l∞,(un)7→ (vn), vn=un+1 −un.
f||f((un))||∞= supn∈N|un+1 −un| ≤ supn∈N(|un+1|+|un|)≤2||(un)||∞f
|||f||| ≤ 2un= (−1)nvn= 2(−1)n+1 ||(un)||∞= 1 ||f((un))||∞= 2
|||f||| = 2
A B 6=∅A∩B A ∪B
A∩B A ∪B A B A ∪B
b∈A∩B
a∈A A ∪B γ : [0,1] →A∪B γ(0) = a
γ(1) = b
t0= sup{t∈[0,1]|γ([0, t]) ⊂A}τnγ([0, τn]) ⊂Alim τn=t0
γlim γ(τn) = γ(t0)A γ(t0)∈A
γ(t0)∈B γ(t0)∈Bcγ t0
ε > 0, γ(t)∈Bcγ(t)∈A γ(t)∈A∪B t ∈]t0−ε, t0+ε[γ([0, t0+ε/2]) ⊂A
t0
a∈A c ∈A∩B A ∩B
b a ∈A A b a, a0A A
A a b b a0A
A∩B A ∪B A B
A F ⊂A F 0⊂A A =F∪F0
A∩B=G∪G0G=F∩B G0=F0∩B A ∩B G =∅
G0=∅G=∅G0=A∩B G B
H=F0∪B A ∪B=F∪H F H A ∪B
A