Jeux déchecs
Projet de programmation scienti…que
ENSTA
Il s’agit dans ce projet de réaliser un jeux d’échec permettant à un joueur humain d’ronter l’ordinateur.
Ce dernier utilisera un algorithme de type min-max pour jouer. Dans une première étape, on développera
une version non graphique et dans une seconde étape si le tepms le permet, on développera une interface
graphique s’appuyant sur les utils développés dansla première phase. La réalisation de ce projet suppose un
minimum de connaissances des échecs (au moins les règles). Il n’est pas question, vu le temps imparti, de
faire jouer la machine comme un grand maître! Dans ce qui suit ne sont énoncés que les principes généraux
et quelques éléments sur les classes à utiliser. Bien évidemment, il vous appartient de préciser et de compléter
ces classes, voire d’en ajouter de nouvelles si le besoin s’en fait sentir.
1 Principe de lalgorithme du min-max
Cet algorithme n’est pas spéci…que, il s’applique à tout jeu à deux joueurs. On peut voir un jeu à deux
joueurs comme une succession de positions, résultat des coups alternés des joueurs. Nous noterons P1
iune
position que doit jouer le joueur 1et P2
iune position que doit jouer le joueur 2:A un instant donné de la
partie, supposons que le joueur 1doit jouer à partir de la position P1
0:Il a en général un certain nombre
de coups possibles C1
kqui vont produire autant de position P2
1;k que le joueur 2va devoir jouer et ainsi de
suite. Ce qui nous donne un arbre de toutes les possibilités d’évolution du jeu à une profondeur donnée.
P0
1
1,1
P
2
1,2
P2
1,3
P2
1,4
P2
1,1
C1
1,2
C1
1,3
C1
1,4
C1
2,1
P1
2,2
P1
2,3
P1
2,1
C2
2,2
C
2
2,3
C2
On dé…nit maintenant une fonction valeur d’une position V(P). La valeur d’une position gagnante pour le
joueur 1vaut +1, d’une position perdante 1, d’une position de match nul 0. La valeur d’une position
autre sera calculée en fonction d’heuristiques liées au jeu. Par exemple aux échecs, on pourra prendre la
di¤érence des valeurs des pièces du joueur 1encore présentes sur l’échiquier la di¤érence avec la valeur des
pièces du joueur 2à laquelle on ajoute la di¤érence du nombre de cases controlées par les deux joueurs. On
dé…nit alors lea fonction M inMax d’une position quelconque Pde la façon suivante :
MinMax(P) = 8
<
:
V(P)si Pest une position terminale
max(MinM ax(P1); :::; MinM ax(Pk)) si Pest une position du joueur
min(MinM ax(P1); :::; MinM ax(Pk)) si Pest une position de l’opposant
P1; :::; Pkdésignant toutes les positions obtenues après un coup.
L’algorithme du min-max consiste à calculer la fonction MinM ax de toutes les positions issues du premier
1
coup du joueur (1dans l’exemple précédent) et à jouer le coup qui donne la valeur maximale.
max
min min
10 -4 +1
-4
-1
515
-1
-4
Cette algorithme part du principe que le joueur opposant jouera le coup présentant la plus petite valeur et
conduit à des stratégies défensives (pas de prise de risque).
1.1 La variante alpha-beta
La variante alpha-beta consiste à stopper l’exploration d’une branche dès lors qu’à un niveau correspondant
à une phase de minimisation on trouve une valeur inférieure à une valeur minmax du niveau précédent.
En e¤et, on peut abandonner l’exploration car on est déjà sur que le joueur cherchant à maximiser sa
position ne jouera pas un coup produisant une valeur inférieure à celle qui l’a déjà trouvée. De même on
stoppera l’exploration d’une branche si en phase de maximisation on trouve une valeur supérieure à une
valeur minmax du niveau précédent. Dans l’exemple suivant :
max
min min
10 -4 +1
-4
-1
-6 15
<-6
-4
l’exploration de la deuxième branche est stoppée car 6<4.
1.2 Implémentation de lalgorithme du min-max
Pour écrire un algorithme de min-max il su¢ t de disposer d’une classe position qui doit au moins fournir :
une fonction qui renvoie la valeur de la position
un pointeur sur la position soeur
un pointeur sur la position de la premiere position …lle
un indicateur sur le joueur qui doit jouer cette position
Comme il peut y avoir énormement de positions à explorer, il est parfois préférable de générer les positions
suivantes au fur et à mesure plutôt que de fabriquer l’arbre complet au avant de lancer l’algorithme dui
minmax. Bien évidemment, une fois l’exploration d’une branche terminer on détruit les positions. C’est
pourquoi, il sera judicieux de prévoir, entre autres, les fonctionnalités suivantes :
générateur de toutes les positions suivantes à une profondeur donnée.
2
destructeur de toutes les positions …lle d’une position (par récursivité toute les positions seront détru-
ites).
On pourra valider l’algorithme sur un jeu tres simple, par exemple le tic-tac-toe (premier à aligner 3 pions
dans un carré 33.
C’est un cas où on peut développer l’arbre jusqu’à la …n de partie (!9=362000 positions). Normalement
l’ordinateur ne peut pas perdre!
2 Application aux échecs
2.1 nition des pièces et déplacement
On commencera par dé…nir une classe type_piece ayant un type (roi,reine,tour,fou,cavalier,pion), un dé-
placement relatif, une valeur (roi=0,reine=9pion,tour=5pion,fou=cavalier=3pion). On dé…nira égale-
ment un classe piece qui aura pour attribut le type de la pièce, sa couleur (noir ou blanc), et sa position
sur l’échiquier.
2.2 nition de léchiquier
On dé…nira une classe echiquier qui sera un tableau 88de pointeur de pièce. Si une case de l’échiquier
un’est pas occupée, la case correspondante du tableau contiendra un pointeur nul. Cette classe permettra
d’avoir en permanence une "image" de l’écchiquier. On pourra adjoindre à cette classe une fonction print
permettant de suivre l’évolution de la partie à l’éctran ou dans un …chier texte.
Tn Fn Dn Rn Fn Tn
Pn Pn Pn Pn Pn Pn Pn Pn
Cn Cn
Pb
Pb
Pb Pb Pb Pb Pb Pb
Tb Cb Fb Db Rb Fb Cb Tb
2.3 nition d’un coup
A…n de suivre le déroulement de la partie, on aura également besoin d’une classe coup qui aura pour attribut
: la couleur, la pièce jouée, l’ancienne position et la nouvelle position, piece prise, coup spécial (petit roque,
grand roque). Pour la position d’une pièce, on utilisera un couple (i; j). Il pourra être utile d’avoir une
fonction générant le codage standard d’un coup (FouC1-D2,DameD1–D7+,O-O,O–O) voir site d’échec sur
internet.
2.4 nition d’une position
Il s’agit d’un état temporaire de l’échiquier. Il serait trop volumineux de stocker à chaque l’état de l’échiquier,
c’est pourquoi on utilisera une classe position décrivant une position relative par rapport à un échiquier
de référence (le dernier état connu de l’échiquier) en indiquant seulement la liste des coups qui font passer
de l’échiquier de référence à la position temporaire. Lorsque l’on aura besoin d’avoir tout l’échiquier on en
générera un.temporaire. Bien évidemment, cette classe sera muni de tous les attributs et fonctionnalités
dont on a besoin dans l’algorithme du minmax.
3
2.5 nération de toutes les positions
A partir d’une position donnée, on aura besoin de générer l’ensemble des coups suivants possibles et les
positions en découlant. C’est une opération couteuse car il faut envisager le déplacement de toutes les pièces
et véri…er que le déplacement d’unr pièce ne met pas le roi en position d’échec!
2.6 Valeur dune position
La valeur d’une position sera +1si c’est une position gagnante et 1 si c’est une position perdante (échec
et mat), 0pour une partie nulle (pat) et sera donnée pour une autre position par
(val_piece(j1)val_piece(j2)) + (cont(j1)cont(j2))
val_piece(j)représente la valeur des pièces (encore présentes) d’un joueur et cont(j)le nombre de
cases contrôlées par un joueur. La première partie correspond à un critère quantitatif essentiel aux échecs
et la seconde à un critère qualitatif sur l’occupation du terrain. Les paramètres ;  sont deux paramètres
permettant de pondérer l’importance d’un critère par rapport à l’autre. Ces deux critères permettent à
l’ordinateur de jouer un peu mieux qu’un débutant. Une grande partie de la qualité d’un jeu d’échec par
ordinateur dépend du choix de ces critères.
2.7 Partie d’échec
On écrira un programme permettant de gérer le déroulement d’une partie :
initialisation de l’échiquier,
séquence de 2 coups : précalcul des coups possibles pour le joueur 1 (humain), coup joué par le joueur
1, détermination du meilleur coup du joueur 2 à l’aide du minmax, coup du joueur 2
mémorisation de l’historique des coups joués et fonction d’annulation d’un coup
chage du déroulement de la partie
3 Validation
On validera chacune des fonctionnalités du programme. On portera une attention particulière au coût calcul.
En e¤et il y a en moyenne 30 à 40 coups possibles en début et milieu de partie. Si on veut que l’ordinateur
joue correctement il faut explorer au moins 4 coups (2 par joueur), ce qui donne de l’ordre de 1 million de
positions.
4 Interface graphique
Si il reste du temps, on pourra essayer de développer une interface graphique avec un outil comme Kylix en
réutilisant tout les outils développés précédemment.
4
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !