Les identités remarquables niveau 3ème
1/ les identités remarquables sont un outil. Quels sont les principaux obstacles
concernant les apprentissages de cet outil en 3ème ? Quels sont les enjeux ?
2/ proposer 3 ou 4 activités permettant de se confronter et de passer ces
obstacles.
Introduction :
Rappel des identités remarquables :
(a+b) 2=a2+2ab+b2
(a-b) 2=a2-2ab+b2
(a+b)(a-b)=a2-b2
Ma présentation se déroulera en 2 parties:
Les prè-requis, les obstacles et les enjeux ; puis viendra une partie qui présente
des activités qui permettent de passer les obstacles.
I. Pré-requis, obstacles et enjeux
A. Pré-requis
Rappeler les pré-requis de cette notion, nous permet de voir les
difficultés déjà rencontrées par les élèves.
1/ Le vocabulaire des expressions littérales et numériques.
Terme, facteur, produit, somme, factoriser, développer, réduire, distributivité…
2/ Connaître et reconnaître une somme ou un produit.
3/ Savoir utiliser la distributivité pour développer ou factoriser des
expressions simples.
2(x+5)=2x+10 6-3y=3(2-y)
4/ Savoir vérifier des égalités
5/ Savoir remplacer et calculer pour une valeur donnée, une expression.
Calculer A pour x=2 : A= 5x2+3x+1
A= 5x22+3x2+1= 20+6+1=27
B. les obstacles
1/ Reconnaître un produit dans la notation (…) 2.
(a+b) 2= (a+b) (a+b)
(a-b) 2= (a-b) (a-b)
Les 2 facteurs n’apparraissent pas clairement
Identité = égalité vraie
Remarquable = qui est connue de tous
François Viéte (16ème siècle) énonce les 2
premières dans les Zététiques
2/ Faire attention à la distributivité de l’exposant (avec une somme)
Les élèves pensent que pour calculer (a+b) 2 il suffit de calculer a2+b2, de même
pour (a-b) 2=a2-b2.
Ils confondent avec ce qu’ils ont déjà vu (axb) 2=a2xb2. Ils ne font pas attention
au signe opératoire et ils appliquent les règles de 4ème sans chercher à
comprendre.
2bis/ Oubli du double produit lors du développement de (a+b)2 et de (a-b)2.
3/ Les élèves ne savent pas élever un produit au carré.
Cet obstacle qui était déjà apparu en 4ème, revient du fait qu’on doit l’utiliser
avec une nouvelle notion.lorsqu’ils doivent développer (3x+1)2, ils notent :
(3x+1)2= (3x2)+2x3xx1+12 lors de cette écriture les élèves oublient les
parenthèses autour du produit et le résultat est souvent
3x2+6x+1 au lieu de 9x2+6x+1.
Le 4ème et 5ème obstacles apparaissent lors de la factorisation d’expressions.
4/ les élèves ne savent quelle identité remarquable utilisée.
5/ Après avoir identifié l’identité remarquable à utiliser, ils oublient de
vérifier le double produit.
6/ Cet obstacle intervient plus tard, lors de résolution d’équation. Les
élèves oublient la 3ème identité remarquable et pour résoudre 9x2-1=0 ; ils
écrivent 9x2=1 au lieu de (3x+1)(3x-1)=0.
Difficulté à reconnaître la 3ème identité remarquable pour résoudre des
équations.
C. les enjeux
L’outil « identités remarquables » est surtout utilisé par les élèves durant
la 3ème et la 2nde. En 1ère, ils apprennent le discriminant et de ce fait les élèves
oublient les identités remarquables et n’utilisent plus que le discriminant.
Cet outil reste essentiel pour factoriser.
Il permet également de développer rapidement des expressions.
On peut également l’utiliser pour faire du calcul mental. (1012 ou 992)
Il est indispensable en 3ème et en 2nd dans la résolution des équations et
des inéquations.
II. Activités
Les deux 1ères activités vont travailler surtout sur la 1ère identité remarquable,
mais on peut adapter ces activités pour les 2 autres identités remarquables.
A. Activité 1
a) Completer le tableau suivant
a
b
a2
b2
(a+b)2
a2+b2
2ab
7
3
8
5
1,5
3,2
100
1
b) Obtient-on (a+b)2=a2+b2?
c) D’après les résultats obtenus, quelle est
l’expression développée de (a+b)2 ?
Activité qui se fait au début du
chapitre.
Elle sert à passer l’obstacle 2 :
distributivité de l’exposant
Elle peut également se faire à l’aide
d’un tableur. Dans ce cas, l’intérêt du
tableur serait d’avoir de nombreux cas
différents et de vérifier si l’élève sait
rentrer correctement les formules de la
1ère ligne.
On peut faire une activité similaire
ou bien agrandir le tableau, afin de
chercher le 2 autres identités
remarquables.
B. Activité 2
Carré d’une somme
a) Une approche géométrique:
a et b désignent 2 nombres positives. On place un
carré de coté a te un carré de coté b sur un carré
de coté a+b. (voir figure)
Exprimer de 2 façons différentes l’aire du carré
de coté a+b.
b) Une demonstration
a et b désignent des nombres. Développer puis
réduire (a+b)2, cest à dire (a+b)(a+b).
c) Calculs rapides
Effectuer chaque calcul, sans utiliser la
calculatrice et sans poser les opérations.
(7+3)2 (8+5)2 (100+1)2 10012
Elle peut se faire à la suite
de l’activité 1.
Elle sert à passer l’obstacle
2bis.
L’approche géométrique de
la formule fait apparaître le
double produit (on peut également
le faire à l’aide d’un découpage)
De plus dans le b), on
démontre la formule
Le c) permet de voir l’utilité
de la formule pour le calcul mental
a+b
a
b
C. Activité 3
Développer les expressions suivantes
en utilisant les identités
remarquables.
A= (3x+5)2 B= (6-7y)2
C= (2x-1)2 D= (x+2y)2
E= (3x-2)(3x+2) F= (9+5x)(9-5x)
Les élèves connaissent les 3
identités remarquables.
Cette activité sert à passer
l’obstacle 3 : élever un produit au
carré.
A= (3x+5)2= (3x )2+2x3xx5+52
E= (3x-2)(3x+2)=(3x )2-22
D. Activité
A/ On se propose de savoir si l’expression A=
x2+6x+9 est de la forme a2+2ab+b2, afin de la
factoriser.
a) recopier et compléter les étapes 1) ; 2) et
3).
b) répondre à la question 4).
Si la réponse est oui, recopier et compléter.
a2+2ab+b2=(a+b)2
x2+6x+9=(…+…)2
B/ factoriser les expressions à l’aide d’une
identité remarquable, lorsque cela est possible.
a) x2+10x+25 b) 4t2-12t+9 c) 64-9a2
d) 81+4x2 e) 121x2+22x+4
C’est un travail de
factorisation à l’aide des
identités remarquables.
Cette activité sert à
passer les obstacles 4 et 5.
La première partie de
l’activité permet de mettre en
place une démarche aux élèves
pour vérifier le double produit.
De plus le travail de factorisation
est simplifié car ils doivent
identifier a et b.
La 2nd partie, permet de
chercher la bonne identité
remarquable et ensuite d’utiliser
la démarche de la 1ère partie pour
factoriser.la d) et la e) ne sont
pas factorisables.
Conclusion :
Les identités remarquables en 3èmeservent surtout à factoriser des expressions
simples. Par la suite elles permettent également de factoriser des expressions
plus compliquées tels que 81x2-16. C’est l’outil essentiel de résolution d’équation
et d’inéquation.
Elles sont rapidement remplacées en 1er par le discriminant.
a2
b2
x2
+
6x
+
9
1)
4)
2)
a
Trouve-t-on le
même résultat ?
b
3)
3)
Calcul de 2ab
Puis généraliser plus tard par le binôme de Newton.
Quelle est la différence entre une notion et un outil ?
L’outil sert ; il n’apporte rien de nouveau.
Les identités remarquables n’apportent rien pour une notion ; c’est seulement une
technique.
Comment présenter le cours sur les identités remarquables ?
il faut que les élèves notent bien la différence entre la forme factorisée
et la forme développée.
On peut l’introduire en 2 parties de cours :
A/ outil pour la factorisation
a2+2ab+b2= (a+b)2
a2-2ab+b2(je factorise) (a-b)2
…..
B/ outil pour le développement
…..
Il ne faut pas oublier de faire travailler les élèves sur les différentes
formes développées : a2+b2+2ab ; 2ab+a2+b2
Quel est le statut du signe égal ?
(Une égalité vraie ou fausse en 5ème on cherche si l’égalité est vraie pour
x=5…)
Une identité :
C’est une égalité toujours vraie
C’est une égalité vraie
x
Une équation :
On introduit une inconnue
? x tel que l’égalité soit vraie
Ecriture fonctionnelle :
x 3x+5
x devient une variable (ce n’est plus une inconnue)qui dépend du domaine
de définition.
Dfx
Résultat d’une opération :
5+2=7
Le signe égal peut être un obstacle pour l’élève.
Connaissez vous d’autre identité remarquables ?
Utilisation du triangle de pascal pour développer (a+b)3 ; (a+b)4
(a+b)3 = a3+3a2b+3ab2+b3
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !