1
TSBC Cours Physique
Exercice bilan des chap2 et 3 : PFD et TEC
Une Charlotte à lunettes de masse m = 55 kg en patins à
roulettes (masse négligeable), assimilable à un solide en
translation est poussée par un camarade sur une route
parfaitement lisse et horizontale (partie AB) avec une
force
F
parallèle au déplacement et dirigée vers l’avant.
Elle est ensuite abandonnée en B sur un plan incliné non lisse
avec la vitesse acquise vB (voir figure)
On se propose d’étudier le mouvement du centre d’inertie G
de l’ensemble.
1. Etude du mouvement sur la partie horizontale (AB)
1.a. Définir précisément le système et le référentiel d’étude, puis dresser un bilan complet des forces exercées sur ce système pour la
partie (AB). On supposera qu’aucune force ne s’oppose à l’avancement de Charlotte et de ses patins.
1.b. Charlotte est initialement immobile en A.
Calculer la vitesse vB atteinte au point B ainsi que la distance AB parcourue si la poussée se fait pendant 5,0 secondes avec une force
d’intensité considérée constante et égale à 100 N. On donnera 2 chiffres significatifs pour chaque résultat.
1.c. Quelle est la nature du mouvement sur cette partie (AB) ?
2. Etude du mouvement sur la partie inclinée (BH)
2.a. Les frottements sont modélisés par une force
f
unique parallèle au plan incliné et d’intensité f constante égale à 50 N.
Calculer la distance d = OH parcourue sur le plan incliné avant que Charlotte ne redescende en fonction de m, g, vB, f et
.
Faire l’application numérique avec = 20°, g = 9,81 m.s-2 et en donnant 2 chiffres significatifs.
2.b. On suppose maintenant que l’intensité de la force de frottement f vaut un cinquième du poids de
Charlotte, quelle est la valeur de l’angle pour laquelle Charlotte parcourt une distance d égale à la moitié de
celle qu’il parcourrait sur un sol parfaitement lisse ? Relire la phrase si nécessaire…
A
H
Chouette un devoir de
physique enfin un
vrai sport !
2
TSBC Cours Physique
Corrigé de l’exercice bilan des chap2 et 3 : PFD et TEC
1. Partie horizontale (AB)
1.a. système {Charlotte + patins} étudié dans le référentiel terrestre supposé galiléen
bilan des forces : le poids
P
de l’ensemble (se ramenant à celui de Charlotte) vertical, vers le bas et appliqué au centre d’inertie G du
système , la réaction normale du sol
N
R
perpendiculaire au sol donc verticale (pas de frottement, condition sous-entendue dans les
phrases « route parfaitement lisse » et « on supposera qu’aucune force ne s’oppose à l’avancement de l’ensemble ») , la force de
poussée
F
horizontale est vers la droite.
1.b. D’après le théorème du centre d’inertie (ou PFD à citer !) en supposant toutes les forces appliquées en G :
GNext amFRPF .
soit, en projetant sur un axe horizontal (O,x) dirigé dans le sens de la poussée (vers la droite) :
0 + 0 + F = maGx donc aGx = ax = F / m = cte
On a donc un mouvement rectiligne uniformément varié avec une vitesse initiale nulle et on peut utiliser les 3 équations vues en 2nde :
(1) ax = cte ; (2) vx = axt et (3) x = ½ axt2
donc vG = vx = (F/m)*t et xG = x = (F/2m)*t2 .
Lorsque le système arrive en B : tB = 5,0 s et en prenant F = 100 N et m = 55 kg on obtient : vB = 9,1 m.s-1 (2 CS) et xB = AB = 22,7 m
soit 23 m avec 2 CS.
1.c. Le mouvement est rectiligne uniformément accéléré car ax > 0 et vx > 0 ce qui signifie que les vecteurs
a
et
v
sont de même sens
2. Partie inclinée (BH)
2.a. La poussée cesse donc
F
=
0
Puisque le plan n’est pas lisse, il faut faire intervenir dans le bilan des forces l’action des frottements. La réaction du sol
R
peut alors
se décomposer en une composante normale
N
R
et une composante tangentielle
f
modélisant les frottements :
R
=
N
R
+
f
Le théorème de l’énergie cinétique appliqué au système entre le point B et le point H (position la plus haute pour laquelle vH = 0) s’écrit
: EcH - EcB = ∑WBH (
ext
F
) = W(
P
) + W(
N
R
) + W(
f
) avec EcH = 0
W(
P
) =
P
*
BH
= mg.(zB-zH) avec z altitude des points considérés soit W(
P
) = - P*d*sin

mg*d*sin
W(
N
R
) = 0 car
N
R
est perpendiculaire au déplacement
W(
f
) =
f
*
BH
= - f*d car
f
s’oppose au déplacement (frottements résistants)
Finalement on obtient : - ½ mvB2 =

mg*d*sin

f*d soit d = mvB2 / 2(mg*sin

+ f) AN : d = 9,7 m avec 2 CS
2.b. Pour un plan parfaitement lisse, f = 0 d’où dlisse = mvB2 / 2(mg*sin

En ce qui nous concerne, pour f = 0,2*mg on a : d = mvB2 / 2(mg*sin
+ 0,2*mg) = ½ * dlisse = mvB2 / 4(mg*sin

soit sin
= 0,2 et
...ouf !
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !