Machines qui pensent : 7 questions, 1 futur
En 1982, alors étudiant au MIT, Danny Hillis cofonda Thinking Machines, l’un des échecs les plus
célèbres de l’histoire de l’informatique. Vivier de brillants chercheurs, TM tenta de bâtir la première
intelligence artificielle au monde. Même si la compagnie ne parvint pas à «bâtir une machine qui
soit fière de nous» (sa devise), sa Connection Machine démontra la praticabilité du parallel
processing, fondement de la «superinformatique» moderne.
Danny Hillis est aujourd’hui coprésident d’Applied Minds, société de design, et travaille sur la Clock
of the Long Now, une horloge mécanique faite pour durer 10.000 ans. La Technology Review l’a
rencontré. Une interview en 7 questions, comme autant de journées dans la vie d’un robot
domestique…
Pourquoi est-il si difficile de créer une intelligence artificielle ?
Nous observons nos propres esprits et nos modèles de pensée consciente, de raisonnement, de
planification et d’élaboration d’analogies, et disons : «Voilà ce qu’est la pensée.» En fait, ce n’est
que la partie émergée d’un gigantesque iceberg. Lorsque les premiers chercheurs en IA ont débuté
leurs travaux, ils considéraient que les problèmes les plus ardus étaient des choses comme le jeu
d’échec et les tests de calcul. Or, ces processus se sont révélés aisés. A l’inverse des types de
pensée qui semblaient ne nécessiter aucun effort, telles la reconnaissance d’un visage et la
détermination de l’élément important dans une histoire. Très, très difficiles.
Pourquoi Thinking Machines a-t-elle échoué à créer une machine qui pense ?
Eh bien, la réponse la plus facile serait que nous n’avons tout simplement pas eu assez de temps.
Ceci dit, «assez de temps» aurait représenté des décennies, voire toute une vie. C’est un problème
épineux, probablement plusieurs problèmes épineux, et nous ne savons pas réellement comment
les résoudre. Nous n’avons toujours aucune vraie réponse scientifique à cette question : «Qu’est-ce
qu’un esprit ?»
Pourquoi Thinking Machines n’a-t-elle pas évolué en tant que
«supercomputing company» ?
Le supercomputing s’est révélé être une technologie, non un business. Mon ami Nathan Myhrvold,
alors à la tête de Microsoft Research, m’a dit un jour : «Il est au moins aussi difficile de développer
un logiciel pour un superordinateur que pour un PC, mais vous ne touchez que quelques milliers de
consommateurs, et nous en avons des milliards. De plus, chacun de ces consommateurs attend de
vous que vous lui donniez exactement ce dont il a besoin.
Quelles furent les applications commerciales nées de vos recherches au sein
de Thinking Machines ?
Surtout du design de puces, de l’exploitation de données (data mining), de la recherche textuelle,
de la cryptologie, de la chimie informatique, de l’infographie, de l’optimisation financière, du
«traitement séismique» (seismic processing) et de la modélisation de comportement des fluides
(fluid flow modeling). Des applications scientifiques comme l’astronomie, la modélisation climatique
et la chromodynamique quantique étaient excitantes lorsque, grâce à elles, on décrochait une
couverture de Nature, mais nous n’avons jamais tiré d’elle le moindre revenu.
Qu’est-il advenu de vos brevets ? Vous êtes à la source du «massive parallel
processing». Vous en retirez un certain crédit, mais aucun financement.
Tout d’abord, soyons bien clairs: je ne suis qu’un contributeur parmi beaucoup d’autres qui ont
développé le massively parallel computing. Pour les brevets, l’une des conséquences de l’échec de
Thinking Machines est que j’ai perdu tous les droits sur les technologies. Rétrospectivement, ce fut
une bénédiction, car cela m’a épargné de consacrer la dernière décennie de ma vie au tribunal.
En quoi votre philosophie de l’intelligence artificielle diffère de la célèbre
«société de l’esprit» de Marvin Minsky ?
Marvin est mon mentor. Ma philosophie de l’IA part forcément de là. Je vivais dans son sous-sol
pendant qu’il rédigeait Society of Mind. Et chaque jour, il écrivait une page ou deux et me laissait
les lire. Puis nous en parlions, et je pouvais entendre toute la réflexion qui les sous-tendait. Je ne