Exercices sur les probabilités
Exercice 1 (Loi de probabilité)
Un sachet contient 2 bonbons à la menthe, 3 à l’orange et 5 au citron. On tire, au hasard, un bonbon du sachet et
on définit les événements suivants :
A : « le bonbon est à la menthe » ;
B : « le bonbon est à l’orange » ;
C : « le bonbon est au citron ».
1. Déterminer les probabilités p(A) puis p(B) et p(C).
2. Représenter l’expérience par un arbre pondéré ( on fait figurer sur chaque branche la probabilité associée).
Exercice 2 (événement contraire)
Un sac opaque contient les boules représentées ci-dessous ; un nombre de points est indiqué sur chacune d’elles.
On tire au hasard une boule et on lit le nombre de points.
1. Dessiner l’arbre des possibles par les probabilités données sous forme
fractionnaire et décimale.
2. Calculer la probabilité de l’événement A : « obtenir au moins 2 points ».
Exercice 3 (Intersection et réunion)
On choisit une carte au hasard dans un jeu de 32 cartes. On note :
A l'événement : "La carte choisie est un pique".
B l'événement : "La carte choisie est rouge (cœur ou carreau)".
C l'événement : "La carte choisie est une figure (valet, dame, roi)".
1) Présenter un modèle mathématique décrivant l’expérience aléatoire.
2) Déterminer les probabilités des évènements A, B, C, A ∪ ∪
∩B, B∩C, A B et A C.
3) Déterminer la probabilité de l'événement D "La carte choisie n'est ni un pique ni une figure".
Exercice 7 page 248
Exercice 14 page 249
Exercice 22 page 250
Exercice 34 page 253
1
1
1
1
2 2
2
3
3
4