N
(Xk)kNf
F
NNRN= maxk6NXkRNN
RNFR=FN
xRFR(x) = P(R6x) = P(maxXk6x) = P(X16x···XN6x)
Xk
FR(x) = P(X16x)× ··· × P(XN6x) = FN(x).
Xk
[0,1]
RN
f(x) = 1 [0,1]
F(x) = x[0,1] f
FR(x) = xN[0,1] RNfR(x) =
F0
R(x) = NxN1
RN
E(RN) = R1
0xfR(x)dx =R1
0NxNdx =N
N+1
N
RN
RNN
N1< N2RN2>RN2
Xk(RN)
l61
l= 1 RN
RN
RN
a < 1
a < 1ε > 1P(l6a) = ε
RNl
NP(RN6a)>ε RN
P(RN> a)6E(RN)
aP(RN6a)=1P(RN< a)>E(RN)
a
E(RN)a < 1NP(RN6a)>1
X1a
a
k > 1pa=P(Xk> a)f F
pa=P(Xk> a) = 1 F(a) = Z+
a
f(x)dx.
Y a
n>1Y=nk∈ {2,3, . . . , n}Xk6a Xn+1 > a
Y
Y
paY∼ G(pa)
a
E(Y) = 1
pa
b
pbpa
b b > a F F (b)>
F(a)pb6pa
a
1
pab
1
pb>1
pac>b
c1
pc>1
pb
f
XE(X)=0 V(X)10
±10 0,50,5
f
XE(X)0V(X)10 P(X62) 0,75
a, 0, a
0,250,50,25 a
a=5
{−3,2,4} {0.5,0.25,0.25}
(Xk)k>1E(λ)
λ
λ Xk
f(x) = λeλx x>0
1
λ
1
λ2
n>100 Xnn
Xk
Xn=Pn
k=1 Xk
n.
Xnn+
1/λ Xk
λ= 0,5n= 100
P(1,96X100 62,1).
nXn1
1
λn
λ n
P(1,96X100 62,1) = P(0,56Xn2
0,260,5) 2FN(0,5) 10,4.
αnβnn
P(αn
λ6Xn6βn
λ)0,99.
nn(λXn1) ∼ N(0,1)
Xn
FN(2,57) 0,995
P(2,57 6n(λXn1) 62,57) 0,99.
P(12,57/n
λ6Xn61+2,57/n
λ)0,99.
αn= 1 2,57/n
βn= 1 + 2,57/n
λ n Xk
Xn1% λ
[αn
Xn,βn
Xn]
X100 = 2,23
λ
α100
X100 =10,257
2,23 0,33 β100
X100 =1+0,257
2,23 0,56 1% λ[0,33; 0,56]
λ0,05
λ < 0,8
n
Xn
n λ
1% 0,05
99% Xn
Xnn > 166
αn
λ>12,57/166
0,8>1n > 166 Xn
n[αn
Xn,βn
Xn] 0,05
n > 166 βnαn
Xn=2×2,57/n
Xn<5,14
nn > 10600
1 / 4 100%