E n >1k
i:E→E∗n= 1 k=F2n= 1
k=F3n= 2 k=F2
iE:E→E∗E
n= 1 k=F2hx, yiE=xy
n= 1 k=F3hx, yiE=xy hx, yiE=−xy
n= 2 k=F2hx, yiE= det(x, y)
EiE
−−→ E∗iE∗
−−→ E∗∗
ev : E→E∗∗
E F 1F2
iE,F :E→F E E∗E
F
E
E
E
i iEhx, yi hx, yiE
ev = i2
n= 1 k=F3
n>3E n
i:E→E∗h−,−i
GL(E)x∈E
hx, −i 2y∈Ehx, yi= 0 {x, y}
x6= 0 z∈Ehx, zi 6= 0 z z+y
{x, z}E u ∈GL(E)
x y z 0 = hx, yi=hu(x), u(y)i=hx, zi 6= 0
n= 2 E B h−,−i
M u ∈GL(E)
hu(x), u(y)i=hx, yit
MBM =B
Mt
M B =r s
t u M=1 1
0 1 M=1 0
1 1
r=u=s+t= 0 B=s0 1
−1 0 M=a b
c d
t
MBM =B ad −bc = 1 M
k1k=F2B=0 1
−1 0
(x, y)7→ det(x, y)
n= 1 u λ 6= 0
hx, yi=hu(x), u(y)i=λ2hx, yi
λ, x, y λ2= 1 λ k