1
Corrigé du calcul de la charge appliquée aux fixations
1. Calcul du chargement en fatigue de la vis de fixation du robot
Afin de calculer la charge sur chaque fixation, on calcule le moment des différentes forces appliquées
au système (bras + socle), en négligeant celle liée aux fixations qui travaillent en compression. On
choisit comme axe celui qui passe par le centre du socle, horizontalement, en diagonale (configuration
pour laquelle le moment est maximal sur les deux fixations les plus éloignées) (Figure 1.) On
considère une configuration la plus défavorable possible : le bras étant complètement déplié (bras de
levier au bout du bras : 1m), ce qui nous ramène à un problème plan. Afin de rendre le calcul
conservatif, on prend également la valeur maximale de la vitesse de rotation (195°/s) ainsi que la
masse maximale de pièce rapportée pour ce robot (190 kg).
Dans cette première partie, on calcule les contraintes comme si la vis était une pièce cylindrique lisse.
C’est dans la partie suivante qu’on tiendra compte de la concentration des contraintes dans le lieu de
rupture, à savoir le fond de filet et qu’on estimera la durée de vie de ces vis en fatigue.
Figure 1 : Géométrie (simplifiée) de la pièce et axe par rapport auquel on calcule les moments. On
suppose la pièce d’épaisseur très faible devant sa longueur et sa largeur.
On distingue quatre contributions au chargement mécanique :
• Le poids propre du bras
• La mise en mouvement du bras (accélération)
• Le poids propre de la pièce
• La mise en mouvement de la pièce (accélération).
On rappelle les principales données nécessaires au calcul dans les Tableaux 1 et 2. On prendra pour
l’accélération de la pesanteur : g = 9,81 m.s
-2
. Comme on travaille en élasticité et en petites
déformations, on utilise le théorème de superposition et on calcule chaque contribution séparément.
Comme les vis sont en principe bien serrées (c’est en tout cas l’hypothèse que l’on fait dans ce calcul),
les efforts de cisaillement ne sont pas pris en compte ; seuls les efforts de traction (verticaux) sont
considérés dans le calcul.
axe par rapport auquel on calcule
les moments des efforts appliqués au système
d
max
d
min
axe par rapport auquel on calcule
les moments des efforts appliqués au système
d
max
d
min