n∈Nn≥2Rn[X]n
P(X)P0(X)
FRn[X] (p0,n(X), p1,n(X), ..., pn,n(X))
P∈Rn[X]φn(P)Bn(P)
φn(P) = nXP (X) + X(1 −X)P0(X)
Bn(P)(X) =
n
X
k=0
Pk
npk,n(X).
φnBnRn[X]
k∈[[0, n]] φn(pk,n)(X) = kpk,n(X)
FRn[X]φn
φnBn
r∈N∗t∈[0,1] (Ω,A,P)Tr
(Ω,A,P)B(r, t)Tr=Tr/r
Y(Ω,A,P)E(Y)Y
V(Y)Y
Y(Ω) ⊂[[0, r]] h[[0, r]] h(Y)
E(h(Y)) =
r
X
k=0
h(k)P(Y=k)
B(r, t)
Tt(Ω) k∈[[0, r]] P(Tr=k) = pk,r(t)
E(Tr), E(Tr), V (Tr), V (Tr), E(T2
r)E((Tr)2);
E((Tr)2) = t
r+t2
r(r−1)
t∈[0,1]
r
X
k=0
pk,r (t)=1,
r
X
k=0
k
rpk,r (t) = 1
r
X
k=0 k
r2
pk,r (t) = 1−1
rt2+1
rt.
t∈R
R2[X]Rn[X]Bn
∼
BnR2[X]BnP∈R2[X]
∼
Bn(P) = Bn(P)An
∼
BnR2[X]
M3(R) 3
I3=
100
010
001
H=
100
011
001
D=
100
010
000
Dn=
1 0 0
0 1 0
001−1
n
An=
1 0 0
0 1 1
n
0 0 1 −1
n
=1−1
nI3+1
nH
H
a b Q =
1 0 a
0 1 b
0 0 1
Q
Q−1a b H =QDQ−1