Telechargé par wamdaogosaw

Corrige exos chaleur

publicité
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
1
Exercices de Phénomènes de Transfert de Chaleur
Laboratoire de Technologie des Poudres
Prof H.Hofmann
Corrigés (1- 21, Chaleur)
Exercice 1
q = 300 kW / m 2
emax = 50cm
T1= 700°C
5m2
k?
k = const.
k, e = ?
avec
e
P
k
= q = (T1 − T2 )
S
e
et
T(x) =
(T2 -T1 )
x + T1
e
équ. 3.14 et 3.15
k
⋅ 680
e
k
⎡ W ⎤
= 441, 2 ⎢ 2 ⎥
e
⎣ m °C ⎦
q = 300 ⋅ 10 3 =
k max = 441, 2 ⋅ 0, 5 = 220 [W / m °C ]
On cherche donc un matériau ayant une conductivité
thermique k ≤ 220 [W/mK]
Cu, Al, Zn pas possible (voir Fig 7.9)
Acier doux k ( 350° C ) = 33 [W / m °C ] ;
e = 7, 5 cm
Acier inox. k ( 350° C ) = 20 [W / m °C ] ;
e = 4, 5cm
Magnésie
T2= 20°C
k (350° C ) ≈ 3 [W / m °C ] ;
e = 0, 68cm
T
T
T
T = T 1 -(T 1 -T 2 ) x /e
1
1
T
x
e
P ro b lè m e
2
T
0
e
S o lu tio n
2
x
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
2
Exercice 2
T
kmoyen
1 2
=
k (T )dT (équ.3.34)
T2 − T1 T∫1
[ km ]T (T1 − T2 )
T ( x ) = T1 −
⋅
⋅x
T
e
[ km ]T
avec k (T ) = k0 + k1 ⋅ T
T2
1
x
k = f(T)
k
1
T
km =
1 2
( k0 + k1T )dT
T2 − T1 T∫1
km =
1 ⎡
k1 2 ⎤ 2
+
k
T
T
0
2 ⎥⎦T1
T2 − T1 ⎢⎣
km =
1 ⎡
k
k
⎤
k0T2 + 1 T22 − k0T1 − 1 T12 ⎥
⎢
2
2 ⎦
T2 − T1 ⎣
km =
1 ⎡
k
⎤
k0 (T2 − T1 ) + 1 (T22 − T12 ) ⎥
⎢
2
T2 − T1 ⎣
⎦
T
k m = k0 +
km
200
1000
km
T ( x)
1000
200
T
1000
k1
(T2 + T1 )
2
0,025
W
]
(1000 − 200 ) + ( 200 − 200 ) ) = 10,55 [
(
2
m°C
= 0,55 + 0,0125 ( (1000 − 200 ) + (T ( x) − 200 ) )
= 0,55 +
T ( x) = 1000 −
= 1000 −
10,55
(1000 − 200)
⋅x=
0,55 + 0,0125 ⎡⎣(1000 − 200 ) + (T ( x) − 200 ) ⎤⎦
1
10,55 ⋅ 800
⋅x
0,55 + 0,0125 ⎡⎣(T ( x) − 200 ) + ( 800 ) ⎤⎦
autre interprétation (plus « mathématique ») :
de k(T) = k0 + k1T on tire le « vrai » k0 (le « b » de y = ax + b)
k0 = k(T) – k1T = 0.55 – 0.025x200 = -4.45
T
pour se ramener à un graphique « simple »
il faut ramener l’origine à zéro :
1000
on a donc :
k(T) = -4.45+0.025 T et on trouve pour
km= -4.45+(0.025/2)1200=10.55
(avant on avait k=k0+k1(T-200))
200
k
k(T) = k0 + k1T
0
200
0.55
0
-4.45
x
T
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
3
1200
Temperature (°C)
1000
800
k= k0 + k1 T
600
k = constant
400
200
0
0
0.2
0.4
0.6
Distance x (m)
x (m)
0
0,48
0,73
0,92
1
T (°C)
1000
800
600
400
200
0.8
1
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
4
Exercice 3
6g =1cm3
5,0% du poids céramique ≡ 6,4 % vol.
7.8g = 1cm3
a) k composite (équation 7.33)
kcomp
⎡
⎛ 1 − kc / k d ⎞ ⎤
⎢1 + 2Vd ⎜
⎟⎥
2kc / k d + 1 ⎠ ⎥
⎝
⎢
= kc
⎢
⎛ 1 − kc / k d ⎞ ⎥
⎢ 1 − Vd ⎜
⎟ ⎥
⎝ kc / kd + 1 ⎠ ⎦⎥
⎣⎢
kcomp = kacier ⋅ 0,899 = 16,91
5g = 0.833cm3
Vd =
0.833
12.18+0.833
= 0.0640
95g = 12.18cm3
Avec les indices suivants :
c = phase continue
d = phase dispersée
Vi = volume de la phase i
W
m°C
k
b) P = S ⋅ ⋅ (T1 − T2 )
e
16,91
P = 2⋅
( 500 − 300 ) = 67,6 kW
0,1
P
kW
q = = 33,8 2
S
m
c) équ. 7.34
keff = kc (1 − P ) = 18,8 ⋅ (1 − 0,064 ) = 17,6
P = q⋅S = S
P = 2⋅
W
m°C
k
(T0 − T1 )
e
17,6
( 200 ) = 70, 4kW
0,1
Exercice 4
On calcule pour le cas régime stationnaire:
q=
T0 − T1 T1 − T2 T2 − T '0
=
=
= cste
1
e
1
h0
h '0
k
500 − 20
T0 − T '0
W
=
= 1371 2
soit: q =
1 +e + 1
m
1 + 0,1 + 1
h0
k
h '0
20
1
5
500 − T1
De plus,
= 1371 d'où T1 = 431°C
1
20
T2 − 20
et
= 1371 d'où T2 = 294°C
1
5
T’0
h'0
T1
T0
h0
T2
e
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
5
Si maintenant e = 20 cm:
500-20
W
= 1066 2
0,
2
m
1 +
+1
20
1
5
T1 ' = 446°C et T2 ' = 233°C
q' =
Ainsi q a diminué de 23% (et non de moitié), T1 a augmenté et T2 diminué.
Ces résultats sont loin d'être intuitifs.
Exercice 5
e2 = 2cm
e1 = 10cm
a)Briques réfractaires
On a donc :
W
k1 = 1
m ⋅°C
Isolant
W
m.°C
T1 = 1100°C , T3 = 20°C
k2 = 0,1
W
1100-20
= cste = 3600 2
0,1 + 0,02
m
1
0,1
1100 − T2
et donc q = 3600 =
d'où T2 = 740°C
0,1
1
b) Briques réfractaire :
Isolant réfractaire : e2 = 3cm
e1 = 7cm
W
k2 = 0,5
k1 = 1W / m°C
e3 = 2cm
m.°C
Isolant :
W
k3 = 0,1
m.°C
Ici, q =
Avec à nouveau :
T1 = 1100°C,T4 = 20°C
Nous trouvons :
a)
T1
T1
1100 − 20
W
= 3273 2
q' =
0,07 + 0,03
m
+ 0,02
1
0,5
0,1
q ' ≈ 0,91q
et 3273 =
b)
T ’2
T2
T3
T4
T3
e1
e2
e1
e2
e3
1100 − T '2
d'où T '2 = 870°C ,
0,07
1
de plus 3273 =
T '2 − T '3
, donc T '3 = 674°C (T '3 < T2 ) .
0,03
0,5
On se rend compte qu'il convient de se méfier des solutions intuitives ou "évidentes" et qu'il vaut
mieux les étayer par un calcul, même approximatif.
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
6
Exercice 6 (mur avec production de chaleur)
q p
− q p 2
∂ 2T
en
intégrant
deux
fois
on
trouve
:
=
−
=
T
x
x + Ax + B
(
)
2k
∂x 2
k
−q p 2
avec la 1èreC.L on a : T ( 0 ) = T0 ⇒ B = T0 on a donc T ( x ) =
x + Ax + T0
2k
q p e − q1
dT
avec q = − k
= q p x − Ak ⇒ q1 = q p e − Ak et donc : A =
dx
k
− q p e 2 q p e 2 q1e
+
−
+ T0 on trouve l'équation cherchée
T (e) =
2k
k
k
q p e 2 q1e
T (e) =
−
+ T0
k
2k
Exercice 7
e = 0, 0095m
h1 = 2340kcal / hm 2 °C
h2 = 6100kcal / hm 2 °C
T1 = 82°C
T2 = 32°C
k = 344,5kcal / hm°C
T1 − T2
q=
e
1
Σ + Σ rj + Σ
hk
λ
Σ rj = 0
q=
kcal
82 − 32
= 80793 [ 2 ]
0,0095
1
1
hm
+
+
344,5 2340 6100
q = 93922.5 [W / m 2 ] (inutile ici )
T −T '
T '− T2
avec q = 1 1 ou 2
1
1
h1
h2
on trouve alors : T1 ' = 47,5°C et T2 ' = 45, 2°C
T1=82°C
h1
T2=32°C
T'1
h2
T'2
9.5mm
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
7
Exercice 8
a) Puissance calorifique
P = U ⋅ I , U =R ⋅ I ⇒ P = RI 2 et comme qi est la puissance par unité de volume
RI 2
qi =
V
l
π
, V = S ⋅l = d2 ⋅l
4
S
2
ρ el ⋅ l ⋅ I ⋅ 4 ρel ⋅ 4 ⋅ I 2 ⋅ 4
16 I 2
=
= ρ el 2 4
qi =
π d
S ⋅π ⋅ d 2 ⋅ l π ⋅ d 2 ⋅π ⋅ d 2
avec R=ρ el
qCu
1,7 ⋅ 10−6 ⋅ 16 ⋅ 5002
=
⋅ 106
2
π ⋅1
⎡ Ωcm ⋅ A2
VA2
W
W⎤
=
= 3 ⇒ 3⎥
⎢
4
3
Acm
cm
m ⎦
⎣ cm
qCu = 689,683 [kW / m3 ]
qGraphite =
1,375 ⋅ 10−3 ⋅ 16 ⋅ 5002
⋅ 106 = 0,547 ⋅ 109 [W / m3 ]
2
π ⋅1
Graphite
= 793!! c ' est pourquoi on utilise le graphite dans les fours (car le
Cuivre
dégagement de chaleur par effet joule est très impor tan t ( mauvais conducteur ))
b)
qi r 2
+B
T =4k
équ.3.25
Condition aux limites : T =T2 si r =r2 (T2 = Text et r2 = Rext =
− qi r22
qi r22
+ B ⇒ B = T2 +
T2 =
4k
4k
− qi r 2
qi r22
q
T (r ) =
+ T2 +
= T2 + i ( r22 − r 2 )
4k
4k
4k
d
)
2
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
∆T = T (r = 0) − T ( r2 ) = T2 +
8
qi 2
r2 − T2
4k
qi 2
r2
4k
ρel 16 I 2 r 2 ρel 16 ⋅ I 2 ⋅ d 2 ρel I 2
∆T =
⋅ 2 4 =
⋅
=
⋅ 2 2
2 4
k 4π d
k
k π d
4π d 4
∆T =
2
⎤
689683
2 ⎡ Wm°Cm
Cuivre : ∆T =
⋅ 0,005 ⎢
=
°
C
⎥ ⇒ ∆T = 0,01°C
3
4 ⋅ 418
⎣ mW
⎦
0,547109 ⋅0,0052
Graphite : ∆T =
= 24°C
4 ⋅34 ⋅ 4,18
Exercice 9
c. L.
x=0
T=0
x=L
T=0
y=∞
T=0
y=0
T=TA sin
∞
θ =∑ An ⋅ e
∞
T ( x, y ) = ∑ An ⋅ e
πx
nπ
x (équ.4.21)
L
⎛ nπ ⎞
−⎜
⎟⋅ y
⎝ L ⎠
⋅ sin
n=0
nπ
x
L
avec c.L y=0 T=f ( x )
L
∞
⇒ f ( x ) = ∑ An ⋅ sin
n=0
Multiplication des deux côtés par sin
x =0
⋅ sin
avec T1 = 0
Cas général :
∫
⎞
⎟y
⎠
n =0
T ( x, y ) ?
x=L
⎛ nπ
⎜
⎝ L
nπ
x
L
mπ
x et intégration entre x=0 et x=L.
L
∞
mπ
mπ
nπ
f ( x ) ⋅ sin
xdx = ∫ ∑ An ⋅ sin
x ⋅ sin
x dx
L
L
L
n
=
0
x =0
L
=0 si n ≠ m
LA
= n si n =m
2
Remplacer f(x) par TA sin
πx
L
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
mπ
A ⋅L
x dx = n
2
L
L
x=L
2TA
πx
mπ
sin
⋅
sin
An =
x dx
L x∫= 0
L
L
∫T
A
sin
πx
9
⋅ sin
avec la relation trigonométrique :
∫ sin
mπ
π
1 ⎛ cos (1 − m ) π x cos (1 + m ) π x ⎞
x ⋅ sin xdx = ∫ ⎜
−
⎟ dx
L
L
L
L
2⎝
⎠
L
(1 − n )π x − cos (1 + n )π
2TA ⎛
An =
⎜ cos
∫
L
L
2L 0 ⎝
⎞
x ⎟ ⋅ dx
⎠
Intégration :
⎡
⎛ (1 − m ) π ⎞
⎛ (1 + m ) π
L
L
sin
sin
⋅
−
x
⎢
⎜
⎟
⎜
L
L
⎢⎣ (1 − m ) π
⎝
⎠ (1 + m ) π
⎝
⎡
⎢
⎢
⎢
T A ⎢ sin ( (1 − m ) π ) sin ( (1 + m ) π
An =
−
π ⎢
1− m)
(
(1 + m )
⎢
0
n = 0 , 1, 2, ... ⇒ 0
⎢ mm == 02,⇒3,...
⇒0
⎢ m=1 ⇒ lim sin (1− m )π = π
m →1
1− m
⎢
⎣
T π
A1 = A = T A
L
⎞⎤
x ⎟⎥
⎠ ⎥⎦ 0
⎤
⎥
⎥
⎥
)⎥
⎥
⎥
⎥
⎥
⎥
⎦
T= 0, y =
8
T
An = A
L
π
T ( x, y ) = TA e
−
π
L
y
⋅ sin
π
L
Y
x
0.5 T0
T= 0
T
T= 0
Z
X
T = T0F(x)
y=0
x=0
x=L
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
10
Exercice 10
hL 510 ⋅ 0, 025
=
= 0, 0054
k
237
⇒ refroidissement " Newtonien " (car Biot ≤ 0.1)
A = 2 ⋅ 0,3 ⋅ H ; V = 0, 005 ⋅ 0,3 ⋅ H (note : ici on néglige les 4 bords : 4(0.005 ⋅ H ))
On calcul en tout premier Biot =
avec l ' équ. 5.4 et avec le rapport :
⇒
2
A
2 ⋅ 0,3 ⋅ H
=
=
V 0, 005 ⋅ 0,3 ⋅ H 0, 005
A 1
e
= avec = L (la demi épaisseur )
2
V L
dT
= hA (T − T f )
dt
dT
hA
=−
(T − T f )
dt
V ⋅ ρ ⋅ Cp
V ⋅ ρ ⋅ Cp
avec
dT
= taux de refroidisement [°C / s]
dt
a)
510 ⋅ ( 315 − 90 ) ⋅ 2 ⎡Wm 2 m3 °Ckg °C ⎤ ⎡ J °C ⎤ ⎡ °C ⎤
dT
=−
=
=
dt
0, 005 ⋅ 2702 ⋅ 900 ⎢⎣ m 2 °Cm3 kgJ ⎥⎦ ⎢⎣ sJ ⎥⎦ ⎢⎣ s ⎥⎦
dT
315 = −18,8 [ °C / s ]
dt
b)
dT
dt
150
=−
2550 ⋅ (150 − 90 ) ⋅ 2
0, 005 ⋅ 2702 ⋅ 900
c)
T -T f
⎛ hAt
= exp ⎜ −
Ti − T f
⎝ ρ CpV
t=−
ρ ⋅ Cp ⋅ e
2h
= −25,1[°C / s ]
⎞
⎛ h⋅t ⋅2⎞
⎟ = exp ⎜ −
⎟ équ. 5.5 avec e = épaisseur
⎠
⎝ ρ Cpe ⎠
⎛ T − Tf
⋅ ln ⎜
⎜ T −T
f
⎝ i
⎞
⎟⎟
⎠
2702 ⋅ 900 ⋅ 0, 005 ⎛ 260 − 90 ⎞
⋅ ln ⎜
⎟ = 10,5 s
510 ⋅ 2
⎝ 500 − 90 ⎠
2702 ⋅ 900 ⋅ 0, 005 ⎛ 120 − 90 ⎞
2ème étape : t2 = −
= 4,15 s
⋅ ln⎝
2550 ⋅ 2
260 − 90 ⎠
1ère étape : t1 = −
ttot = t1 + t2 ≅ 14,6 s
Al 500°C
Eau
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
11
Exercice 11
ti = 200°C
t f = 25°C
T = 35°C
142 ⋅ 0.05
= 0, 45
15.5
λ
T − Tf
35 − 25
10
=
=
= 0, 057
Ti − T f 200 − 25 175
Bi =
h⋅r
Acier inox 200°C
=
Air forcé 25°C
Avec diagramme 5.3a
Fo =
α ⋅t
r2
≅ 4 ⇒t=
4r 2
α
=
4 ⋅ 0, 052
= 2222.22 s
4, 5 ⋅ 10−6
Température superficielle :
T − 25
= 0, 05
200 − 25
(Diagramme 5.3b) [avec F0 = 4, Bi = 0,45]
T = 0,05 ⋅ 175 + 25 = 33,75°C
Exercice 12
r = 0, 01m
T1 = 900°C
TF = 25°C
avec
heau = 4500W / m 2 k −1
hhuile = 1700W / m 2 k −1
h ⋅ r 4500 ⋅ 0, 01
=
= 2, 9
k
15, 5
1700 ⋅ 0, 01
Bihuile =
= 1, 096 1.1
15, 5
15, 5
F0 =
⋅ t = 0, 044 ⋅ t
2
7780 ⋅ 444 ⋅ ( 0, 01)
α=
k
ρ Cp
Fo =
kt
ρ ⋅ Cp ⋅ r 2
Acier inox 900°C
Bieau =
Eau 25°C
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
t (s)
1
2
5
Avec Diagramme 5.3 b et θ =
F0
0,044
0,088
0,220
(T − T )
(T − T )
f
i
θ eau
T (°C)
θ huile
12
f
1s
0,6
2s
0,4
5s
0,3
550
0,88
375
0,7
288
0,6
T °C)
795
638
550
On remarque bien que le refroidissement dans l’eau est bien plus rapide que celui dans l’huile (le
coefficient de transfert de chaleur h est donc plus élevé pour l’eau)
Exercice 13
a) équ. 5.19
T -T f
Ti − T f
Al 500°C
sin λˆn
cos ⎡⎣ λˆnξ ⎤⎦ exp ⎡⎣ −λˆn2 ⋅ F0 ⎤⎦
ˆ
ˆ
ˆ
n =1 λ + sin λ cos λ
n =2
= 2∑
n
n
n
pour x = 0 ξ = 0 ⇒ cos ⎡⎣ λˆnξ ⎤⎦ = 1
h ⋅ L 2550 ⋅ 0, 025
=
= 0, 268;
k
237
k ⋅t
237 ⋅ 10
F0 =
=
= 1, 56
2
ρ CpL 2702 ⋅ 900 ⋅ 0, 0252
Bi =
Eau
avec tableau 5.1 (il faut faire une interpolation graphique ou numérique (Excel…))
avec (pour une plaque) L = e/2 (demi épaisseur) (attention d’utiliser les valeurs du tableau en
radian)
λ1 ⋅ L = λˆ1 = 0,57
sin λˆ1
= 0,56
λˆ1 + sin λˆ1 cos λˆ1
λ2 ⋅ L = λˆ2 = 3, 28
sin λˆ2
= −0, 04
λˆ2 + sin λˆ2 cos λˆ2
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
13
⎡
⎤
2
2
⎢
= 2 0,56 ⋅ exp ⎡⎣ − ( 0,57 ) ⋅1,56 ⎤⎦ − 0, 04 ⋅ exp ( −3, 28 ) ⋅1,56 ⎥
⎢
⎥
Ti − T f
−
9
⎢⎣
⎥⎦
0,337
2,05⋅10
T − Tf
= 0, 674
Ti − T f
T − Tf
T = 0, 674(500 − 90) + 90 = 366°C
b) méthode graphique
Avec diagramme 5.2a
T − Tf
= 0,75
Ti − T f
T = 0,75 ( 500 − 90 ) + 90 = 397.5°C
∆T ( calculer-graphique ) 30°C
Exercice 14
Equation 6.8
π ⎛ ρl ⋅ H f ⎞
2
1 ⎛V ⎞
t= ⎜
⎟
⎜ ⎟
4 ⎝ Tm − T0 ⎠ ρ ⋅ k ⋅ c p ⎝ A ⎠
2
1) plaque
V
a ⋅b⋅l
=
A 2ab + 2al + 2bl
t=
π ⎛ 246 ⋅ 103 ⋅ 6600 ⎞
⎜
4⎝
(1148 − 20 )
2
2
1
⎛ 0,1 ⎞
⋅⎜
⎟ ⋅
⎟ = 1475 s
⎠ 1600 ⋅ 0,8 ⋅ 1500 ⎝2, 4 ⎠
1.736⋅10−3
t = 24, 5 min
2) sphère
4 3
πr
V 3
r 0, 05
=
= =
= 1.6 ⋅ 10−2 Soit environs 6 fois moins que la plaque (6.25 fois
2
A 4π r
3
3
exactement)
t = 235s ≈ 4 min
On remarque que la différence de temps de solidification pour deux pièces de même épaisseur
peut être très différente. Le rapport du volume sur l’air est donc très important (de plus ce terme
est au carré !). Ici la différence de volume à aussi son importance car pour un volume égal
(sphère de r = ~28cm) il faut 2h 10min de solidification.
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
14
Exercice 15
µ Cp
Pr =
k
=
1, 9 ⋅ 10−5 ⋅ 0, 24
⎡ kg ⋅ m ⋅ s ⋅ kcal ⋅ m ⋅ s ⋅ °C
⎤
= 0, 735 ⎢
= − ⎥ (sans dimension)
−6
2
2
6, 2 ⋅ 10
⎣ m ⋅ s ⋅ kg ⋅ kcal ⋅ °C
⎦
um ⋅ d ⋅ ρ
⎡ m ⋅ m ⋅ kg ⋅ s 2 ⋅ m 2
⎤
26, 5 ⋅ 0, 04 ⋅ 1, 2
66947
=
= − ⎥ (écoulement turbulent)
⎢
3
−5
1, 9 ⋅ 10
µ
⎣ s ⋅ m ⋅ kg ⋅ m ⋅ s
⎦
0,8
0,4
Nu = 0, 023 Re ⋅ Pr = 147, 5
h⋅d
Nu =
k
Air 26.5m/s
−2 ⎡ kcal ⎤
⇒ h = 2, 286 ⋅ 10 ⎢ 2
⎣ m s°C ⎥⎦
⎡ W ⎤
h = 95, 68 ⎢ 2 ⎥
⎣ m °C ⎦
Re =
=
Exercice 16
Cet exercice a deux solutions, parce que la définition de h1 n’est pas assez claire.
1. Version
2. Version
h1 = coeff. de transfert de chaleur h = coeff. de transfert de chaleur du métal
1
de la surface intérieure du tube
h2
h2
Iso
r3
Me
r2
r1
h1
r3
h1
r2
r1
h0
Version a) :
h1 ≡ h vapeur - métal
h1 ( vapeur-solide ) = 9760
kcal
W
= 11' 346 2
2
hm °C
m °C
1
⎡ Tp − Tair ⎤ 4 ⎡ W ⎤
h2 solide-air (convection naturelle) = 11,3 ⎢
⎥ ⎢ 2 ⎥ ( formule 8.50)
⎣ 2r ⎦ ⎣ m °C ⎦
kcal
W
= 0,163
kiso = 0,14
hm°C
m°C
Tvapeur 3,8bar = 139°C
P=
Tvapeur − Tair
ΣR
(pas de résistance entre les couches) )
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
15
Cas stationnaire (équ 3.37):
TVapeur − TMe (V ) TMe (V ) − TMe ( Iso ) TIso ( Me ) − TIso ( Air )
TIso ( Air ) − TAir
=
=
=
1
1
r
r
ln 2
ln ⎛⎜ 3 ⎞⎟
1
r
1
⎝ r2 ⎠
h1 2π r1 L
⎛ TIso − TAir ⎞ 4
2π k Me L
2π k Iso ⋅ L
1, 3 ⎜
⎟ ⋅ 2π r3 L
⎝ 2r3
⎠
Estimations :
( )
P=
Lorsque h1 est très grand, la résistance entre la vapeur et le solide et très petite, donc Tvapeur ≈ TMe (V )
Lorsque k Me est très grand TMe(V) ≈ TMe ( Iso ) ; donc le gradient de la température dans le métal est négligable
⇒ TIso ( Me ) ≈ TVapeur (et la résistance à l'interface métal isolant est aussi négligeable)
TIso ( Me ) = 139°C
TIso ( Air ) = T2
TAir = 21°C
P=
(139 − T2 )
0, 035
0, 03
2π ⋅ 0,162 ⋅ 1
ln
P=
(139 − T2 )
0,1514
=
(T2 − 21)
1
=
1
⎛ T − 21 ⎞ 4
1, 3 ⎜ 2
⎟ ⋅ 2π ⋅ 0, 035 ⋅ 1
⎝ 0, 07 ⎠
(T2 − 21)
et on trouve en tatonnant ou à l'aide d'un graphique
1
0, 555 (T2 − 21)
1
4
T2 = 114,5°C
P = 161,8 W / m tube
Vérification des estimations:
∆TVapeur − Métal < 0,09°C
⎛
∆TMe ⎜ k
⎝
⎫
⎪
⎬ négligeable!!
W ⎞
≈ 30
≈
°
0,12
C
⎟
⎪
m°C ⎠
⎭
Flux de vapeur :
∆TVapeur =
π 0,052
4
⋅ 3 ⋅ 3,8 ⋅ 0,568 = 0,014kg / s
p
= 5,7°C / m tube
m ⋅ cp
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
Version b) :
Solutions pour le cas où h1 = coeff. de transfert de chaleur du tube
h1 = 9760
kcal
W ⎞
⎛ J
= 11370 ⎜ 2 = 2 ⎟
2
hm °C
⎝ sm °C m °C ⎠
k Iso = 0,14
kcal
W ⎞
⎛ J
= 0,162 ⎜ 2
= 2 ⎟
2
hm °C
⎝ sm °C m °C ⎠
TVapeur = 139°C ( 412k )
1
⎡ Tp − Tair ⎤ 4 ⎛ W ⎞
h2 = 1,3 ⎢
⎥ ⋅ ⎜ 2 ⎟ équ. 8.50 (convection naturelle)
⎣ 2r ⎦ ⎝ m °C ⎠
h0 = ?
Régime turbulent ou laminaire ? donc il faut calculer Re
u ⋅d ⋅ ρ
Re = m
µ
u m = 3 [m/s]
d = 0,052 [m]
ρ ≈ 1,81 [kg/m3 ] (Il faut chercher les valeurs pour vapeur saturée)
kg
]
m×s
⇒ Re = 21'071 donc turbulent!!
µ ≈ 13,4 ⋅ 10−6 [
h0 =
Nu ⋅ k
d
Nu = 0,026 ( Re Pr ) 4 = 0,026 ⋅ ( 21071 ⋅ 1,054 )
3
3
4
Pr pour vapeur sat. 139°C = 1,054
Nu = 47,3
W
47,3 ⋅ 28,2 ⋅ 10−3
[ 2 ] k pour vapeur sat. 139°C = 28,2 10-3
0,052
m K
W
h0 = 25,65 [ 2 ]
mk
Pertes?
Tvapeur − Tair
P=
ΣR
139 − 21
P=
⎛ 0,03 ⎞
⎛ 0,035 ⎞
ln ⎜
ln ⎜
⎟
0,030 ⎟⎠
1
1
⎝ 0,026 ⎠
+
+ ⎝
+
1/ 4
25,65 ⋅ 2π 0,026 ⋅ 1 2π ( 9760 ⋅ 0,004 ) ⋅ 1 2π ⋅ 0,162 ⋅ 1
⎛
⎞
⎜
⎟
− Tair ⎟ 2π 0,035
1,3 ⎜ TN
iso
Problèmes
⎜ car
⎟
⎝ inconnu
⎠
h0 =
16
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
∆T dans le métal très petit
TMe(V) ≈ TMe ( Iso ) ⇒ ≅ 139°C
Cas stationnaire :
(139-T2 )
(T2 − 21)
P=
=
1
⎛ 0,035 ⎞
ln ⎜
1
⎟
⎝ 0,03 ⎠
⎛ T2 − 21 ⎞ 4
1,3 ⎜
⎟ ⋅ 2π ⋅ 0,035
2π ⋅ 0,162
⎝ 0,07 ⎠
P=
(T2 − 21)
139 − T2
=
0,1514
1
0,555 ( T2 − 21)
1
4
T2 ≈ 114,5°C
P = 161,7 [
W
]
m tube
Vérification des estimations :
∆Tvapeur − métal
139 − Tme
Tme = 100,4°C
1
25,65 ⋅ 2π ⋅ 0,026
Tme ≠ Tvapeur Parce que la différence est trop grande on fait une
161,7 =
nouvelle estimation:
TMe(V) = TMe ( Iso ) = TIsolant ( Me )
⇒ ∆T dans le métal est négligeable
139-Tme
T −T
= me iso
1
⎛ 0, 035 ⎞
ln ⎜
⎟
25, 65 ⋅ 2π ⋅ 0, 026
⎝ 0, 030 ⎠
2π ⋅ 0,162
139 − Tme Tme − Tiso
=
0, 23
0,154
Tiso = 1, 66Tme − 91,5
Tme =
(Tiso + 91,5)
1, 66
Calcul de la température de la surface d'isolant Tiso(Air) :
( Tiso + 91,5)
− Tiso
1,66
=
0,035
ln
0,03
2π ⋅ 0,162
Tiso − 21
1
1
⎡ Tiso + 91,5
⎤ 4
21
−
⎢ 1,66
⎥
1,3 ⎢
⎥ ⋅ 2π ⋅ 0,035
2 ⋅ 0,35
⎢
⎥
⎢⎣
⎥⎦
17
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
18
⇒ (graphique, par interpolation) Tiso(Air) = 42°C
42 − 21
1
P=
= 25 W / m tube
1
⎡ 42 − 21 ⎤ 4
1,3 ⎢
⎥ ⋅ 2π ⋅ 0,035
⎣ 2 ⋅ 0,035 ⎦
Vérification si ∆T dans le tuyau est négligeable :
∆T
0,030
ln
0,026
2π ⋅ 39
⇒ ∆T = 0,014°C ⇒ négligable
25=
Exercice 17
f ( a,ρ ,p,µ ) = 0
avec a = vitesse du son
a = LT −1
p = ML−1T −2
kgm
kg ⎞
⎛ N
⎜ 2 = 2 2 = 2 ⎟
sm
s m⎠
⎝m
ρ = ML−3
N ⋅ s kgm ⋅ s
kg ⎞
⎛
⎜ Pa ⋅ s= 2 = 2 2 =
⎟
m
sm
s⋅m⎠
⎝
a ) n = 4 (grandeur : a, ρ , p, η )
µ = ML−1T −1
b) k = 3 (Dimension : M, L, T)
c ) il y a donc m = 4 − 3 = 1 paramètre sans dimension
π1 = µα p β ρ γ a
d ) M α L−α T −α M β L− β T −2 β M γ L−3γ L1T −1 ≡ 1
pour M: α +β +γ =0
pour L: -α -β -3γ +1=0
pour T: -α -2β -1=0
M+L
L-T
-2γ =-1
γ = 12
β =- 1 2
α =0
π1 = a
ρ
p
⇒ a = π1
p
ρ
Conclusion
On comprend mieux après cet exercice pourquoi les
isolants à l’amiante ont été interdit… ☺
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
Exercice 18
La fraction de flux émise dans la direction D s'écrit:
e
d 2 Φ D = dS ⋅ cos β dϖ équ.9.5
π
Avec e pour un corps noir : σ ⋅ T 4 équ. 9.12, 9.14 et 9.20
σ ⋅T 4
⇒ d 2Φ D =
dS ⋅ cos β dϖ
π
Exercice 19
a ) émissivité ε c lié au CO 2
Pc = 0,15 ⋅ 2 = 0,3atm
Pc L = 0,3 ⋅ 1,5 = 0, 45 m ⋅ atm
Tg = 1773K
⇒ Diagramme CO 2 (Fig 9.4 a) ⇒ ε = 0,12
correction : Ptotal = 2atm ⇒ CCO2 = 1,1 (Fig. 9.4 b)
ε CO = 1,1 ⋅ 0,12 = 0,13
2
Absorbtion liée au CO2
Φ R = 1,16 ⋅ 106 W / m 2 = σ TR4 ⇒ TR = 2127 K
⇒ TR > Tg !!
parce que Tg <
T
R
N
⇒ (Pc L)*=Pc L ⋅ TR /Tg
Température de rayonnement
ε ' = f ( Pc L*, TR )
α CO = ε '− (Tg / TR )
0,65
2
( Pc L ) * = 0,3 ⋅ 1,5 ⋅ ( 2127 1773) = 0,54
Diagramme CO2 ⇒ ε ' = 0,1
Correction identique Cc = 1,1 ⇒ ε ' = 0,11
(
)
0,65
α CO =0,11 2127 1773
=0,124
Important : α CO ≠ ε CO !! Note : le gaz N 2 est transparent
b) ε et α d'eau
2
2
2
Emission liée à la vapeur d'eau
Peau = 0,20 ⋅ 2 = 0,4 atm
Peau ⋅ L = 0,4 ⋅ 1,5 = 0,60 m ⋅ atm
Tg = 1773K
19
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
Diagramme H 2O ⇒ ε = 0,19 (Fig. 9.5)
Correction
Pe + Pt
= 1,2 ⇒ Ceau = 1,4 (Fig. 9.5)
2
ε eau = 1,4 ⋅ 0,19 = 0,266
Absorbtion liée à la vapeur d'eau
ε '=f ( TR Peau L )
α eau = ε ' Ceau
TR = 2127 K
Pe L = 0,60
⇒ ε ' = 0,15
α = 1,4 ⋅ 0,15 = 0,21
α eau ≠ ε eau
c)
ε gas = ε CO + ε eau − ∆
ε
N
2
Correction
α gas = αCO + α eau − ∆α
2
⎛⎡ P
⎞
⎤
eau
, ⎡⎣ Peau + PCO2 ⋅ L,⎤⎦ T ⎟ (Fig 9.6)
∆α , ∆ε = f ⎜ ⎢
⎥
⎜ ⎢ PCO + Peau ⎥
⎟
⎦
⎝⎣ 2
⎠
Peau
0,4
=
= 0,57
PCO2 + Peau 0,3 + 0,4
(
(P
eau
)
)
+ PCO2 ⋅ L = 0,3 + 0,4 ⋅ 1,5 = 1,05
T > 940
⇒ ∆ε = ∆α = 0,052
ε gas = 0,13 + 0,266 − 0, 052 = 0,344
α gas = 0,124 + 0,21 − 0,052 = 0,282
Exercice 20
ε1 = 0,21 ( à 2000 K )
ε 2 = 0,06 ( à 600 K )
T1 = 2000 K
T2 = 600 K
σ = 5,6703 ⋅ 10−8 W / m 2 K 4
ε1ε 2
ϕ2 =
⋅ σ (T14 − T24 ) = 44,05 [kW / m 2 ] équ. 9.48
1 − (1 − ε1 )(1 − ε 2 )
20
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
Avec écran :
T1
T
T 1e
T e2
T2
x
Cas stationnaire : q1→e1 = qe1 →e2 = qe2 →2
ε1ε e
1
(
1 − (1 − ε1 ) 1 − ε e1
)
σ (T − T
4
1
4
e1
)
(
)
ε e2 − ε 2 ⋅ σ ⋅ Te42 − T24
k
= Te1 − Te2 =
e
1 − 1 − ε e2 (1 − ε 2 )
(
)
(
k ≈ 108 [W / mK ]
ε ( T ) = 1, 05 ⋅ 10−4 T + cste
ε1 = 0, 21
( interpolation linéaire )
ε 2 = 0, 06
q=
ε1 ⋅ ε e
1
(
1 − (1 − ε1 ) 1 − ε e1
)
σ (T14 − Te4 )
1
k
q = − Te1
e
avec k ≈ 108W/mK, ε e1 = 1, 05 ⋅ 10−4 Te1
Te2 ≈ Te1 ⇒ aucune influence de la conduction sur le flux de chaleur
⇒e=0
q=
ε1 ⋅ ε e
εe ⋅ε2
σ (T14 − Te4 ) =
σ (Te4 − T24 )
1 − (1 − ε1 )(1 − ε 2 )
1 − (1 − ε e )(1 − ε 2 )
⇒
Te ≈ 1830°C , k ≈ 92,7 ( W/mK ) (Littérature)
q = 30,25 [kW / m 2 ]
Vérification :
∆T = Te1 − Te2 = q
Te1 = 1830,5
Te2 = 1829,5
e
λ
=
30250 ⋅ 0,003
= 0,97°C ≈ 1°C
92,7
)
21
Exercices de Phénomènes de Transfert de Chaleur : Corrigés
Exercice 21
22
N2 1.67 bars
1 Thermocouple
2 Alumine (ε à 1073 K = 0,8)
3 Graphite ( corps noir ε = 1)
L’azote est transparent (donc aucune influence)
2
3
Avec équation 9.63 :
T14 =
ε 2T24 + ε 3T34 −
ε 2ε 3
(T
4
3
2
1 − (1 − ε 2 )(1 − ε 3 )
T1 = 1169,8 K ≅ 1170K
1
+ T24 )
1223K
1073K
0.3m
0.6m
0.9m
Téléchargement