iv Table des matières
III Suites numériques 31
III.1 Vocabulaire de l’ordre dans IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
III.1.1 Majorants, minorants .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
III.1.2 Théorème de la borne supérieure (complément) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
III.2 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
III.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
III.2.2 Composée d’une suite par une fonction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
III.2.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
III.3 Représentation graphique d’une suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
III.3.1 Représentation graphique d’une suite définie explicitement ...................... 32
III.3.2 Représentation graphique d’une suite définie par récurrence ..................... 33
III.3.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
III.4 Suites bornées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
III.4.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
III.4.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
III.5 Suites monotones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
III.5.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
III.5.2 Méthodes d’étude du sens de variation d’une suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
III.5.3 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
III.6 Suites arithmétiques - suites géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
III.6.1 Suites arithmétiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
III.6.2 Suites géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
III.6.3 Exercices résolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
III.7 Limites de suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
III.7.1 Limite finie, limite infinie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
III.7.2 Théorèmes de comparaisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
III.7.3 Calcul algébrique de limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
III.7.4 Limites de suites géométriques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
III.7.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
III.8 Suites monotones bornées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
III.8.1 Théorème de convergence d’une suite monotone . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
III.8.2 Suites adjacentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
III.8.3 Exercices résolus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
III.8.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
III.9 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
IV Limites de fonctions, continuité 53
IV.1 Limite finie (ou réelle) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
IV.1.1 Limite d’une fonction en +∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
IV.1.2 Limite d’une fonction en un réel a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
IV.2 Notion de continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
IV.3 Utilisation de la continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
IV.3.1 Continuité et bijection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
V Exponentielles et équations différentielles 57
V.1 La fonction exponentielle de base e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
V.1.1 Propriété fondamentale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
V.1.2 Sens de variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
V.1.3 Autres propriétés algébriques de l’exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
V.1.4 Quelques limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
V.2 La fonction logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
V.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
V.2.2 Dérivabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
V.2.3 Dérivée de lnu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
V.2.4 Logarithme népérien et calcul intégral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
V.3 Des exponentielles et des logarithmes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
V.3.1 Notation ab, pour a,bréels et a>0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
V.3.2 Fonctions exponentielles de base a(avec a>0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
V.3.3 Fonctions logarithmes de base a(avec a>0 et a,1) . . . . . . . . . . . . . . . . . . . . . . . . . . 63
V.4 Équations différentielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
V.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
LYCÉE PONTUS DE TYARD Terminale VI