Cours de Mathématiques
Sup MPSI PCSI PTSI TSI
En partenariat avec l’association Sésamath http://www.sesamath.net
et le site http://www.les-mathematiques.net
Document en cours de relecture
Alain Soyeur - François Capaces - Emmanuel Vieillard-Baron
23 mars 2011
Table des matières
1 Nombres complexes 19
1.1 Le corps Cdes nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.1 Un peu de vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.2 Construction de C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.1.3 Propriétés des opérations sur C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Parties réelle, imaginaire, Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.1 Partie réelle, partie imaginaire d’un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.2.2 Conjugaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3 Représentation géométrique des complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.1 Représentation d’Argand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Interprétation géométrique de quelques opérations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Module d’un nombre complexe, inégalités triangulaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5 Nombres complexes de module 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.1 Groupe Udes nombres complexes de module 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.2 Exponentielle imaginaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.6 Argument, fonction exponentielle complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.6.1 Argument d’un nombre complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.6.2 Fonction exponentielle complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.7 Racines n-ièmes de l’unité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.8 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.8.1 Racines carrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.8.2 Équations du second degré . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.9 Nombres complexes et ométrie plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.9.1 Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.9.2 Barycentre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.9.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.10 Transformations remarquables du plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.10.1 Translations, homothéties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.10.2 Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.10.3 Similitudes directes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.11 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.11.1 Forme algébrique - Forme trigonométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.11.2 Polynômes, équations, racines de l’unité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.11.3 Application à la trigonométrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
1.11.4 Application des nombres complexes à la géométrie . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
1.11.5 Transformations du plan complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2 Géométrie élémentaire du plan 62
2.1 Quelques notations et rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.1.1 Addition vectorielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1.2 Produit d’un vecteur et d’un réel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1.3 Vecteurs colinéaires, unitaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.1.4 Droites du plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2 Modes de repérage dans le plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2.1 Repères Cartésiens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.2.2 Changement de repère . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2
Équation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.2.3 Repères polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Équation polaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.2 Interprétation en terme de projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.3.4 Interprétation en termes de nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4 Déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.2 Interprétation en terme d’aire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.3 Propriétés du déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.4.4 Interprétation en terme de nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.5 Application du déterminant : résolution d’un système linéaire de Cramer de deux équations à deux
inconnues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.5 Droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5.1 Préambule : Lignes de niveau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5.2 Lignes de niveau de M7→~
u.
AM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.5.3 Lignes de niveau de M7→det³~
u,
AM´. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.5.4 Représentation paramétrique d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.5.5 Équation cartésienne d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.5.6 Droite définie par deux points distincts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.5.7 Droite définie par un point et un vecteur normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.5.8 Distance d’un point à une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.5.9 Équation normale d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.5.10 Équation polaire d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.5.11 Intersection de deux droites, droites parallèles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.6 Cercles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.6.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.6.2 Équation cartésienne d’un cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2.6.3 Représentation paramétrique d’un cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
2.6.4 Équation polaire d’un cercle passant par l’origine d’un repère . . . . . . . . . . . . . . . . . . . . . 83
2.6.5 Caractérisation d’un cercle par l’équation
MA.
MB =0. . . . . . . . . . . . . . . . . . . . . . . . . 83
2.6.6 Intersection d’un cercle et d’une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.7.1 Produit scalaire et déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.7.2 Coordonnées cartésiennes dans le plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
2.7.3 Géométrie du triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.7.4 Cercle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.7.5 Coordonnées polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.7.6 Lignes de niveaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3 Géométrie élémentaire de l’espace 113
3.1 Préambule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.1.1 Combinaisons linéaires de vecteurs, droites et plans dans l’espace . . . . . . . . . . . . . . . . . . 113
3.1.2 Vecteurs coplanaires, bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.1.3 Orientation de l’espace, base orthonormale directe . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.2 Mode de repérage dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.2.1 Coordonnées cartésiennes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Calcul algébrique avec les coordonnées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Norme d’un vecteur, distance entre deux points dans un repère orthonor . . . . . . . . . . . . . 117
3.2.2 Coordonnées cylindriques et sphériques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
3.3 Produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.3.2 Expression dans une base orthonormale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.3.3 Propriétés du produit scalaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
3.4 Produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.4.1 Définition du produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
3.4.2 Interprétation géométrique du produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
3
3.4.3 Propriétés du produit vectoriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Interlude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Quelques exemples d’applications linéaires fort utiles pour ce qui vient... . . . . . . . . . . . . . . 123
3.4.4 Expression dans une base orthonormale directe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.5 Déterminant ou produit mixte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.5.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.5.2 Expression dans une base orthonormale directe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
3.5.3 Propriétés du produit mixte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.5.4 Interprétation géométrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.6 Plans dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.6.1 Représentation paramétrique des plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
3.6.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Interprétation géométrique de l’équation normale . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Position relative de deux plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.6.3 Distance d’un point à un plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Deux méthodes de calcul de la distance d’un point à un plan . . . . . . . . . . . . . . . . . . . . . 130
3.7 Droites dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.7.1 Représentation paramétrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.7.2 Représentation cartésienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.7.3 Distance d’un point à une droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.7.4 Perpendiculaire commune à deux droites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.8 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.8.1 Généralités . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.8.2 Sphères et plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.8.3 Sphères et droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.9 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.9.1 Produits scalaire, vectoriel et mixte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
3.9.2 Coordonnées cartésiennes dans l’espace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.9.3 Sphères . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
4 Fonctions usuelles 151
4.1 Fonctions logarithmes, exponentielles et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.1.1 Logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.1.2 Exponentielle népérienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
4.1.3 Logarithme de base quelconque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
4.1.4 Exponentielle de base a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
4.1.5 Fonctions puissances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.1.6 Comparaison des fonctions logarithmes, puissances et exponentielles . . . . . . . . . . . . . . . . 159
4.2 Fonctions circulaires réciproques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.2.1 Rappels succincts sur les fonctions trigonométriques . . . . . . . . . . . . . . . . . . . . . . . . . . 160
4.2.2 Fonction Arcsinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.2.3 Fonction Arccosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.2.4 Fonction Arctangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
4.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.3.1 Définitions et premières propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Sinus et Cosinus hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Tangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.3.2 Formulaire de trigonométrie hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.3.3 Fonctions hyperboliques inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Fonction argument sinus hyperbolique argsh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Fonction Argument cosinus hyperbolique argch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Fonction Argument tangente hyperbolique argth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.4 Deux exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.5 Fonction exponentielle complexe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
4.6 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.6.1 Fonctions exponentielles, logarithmes et puissances . . . . . . . . . . . . . . . . . . . . . . . . . . 178
4.6.2 Fonctions circulaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.6.3 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
4
5 Equations différentielles linéaires 198
5.1 Quelques rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.2 Deux caractérisations de la fonction exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.2.1 Caractérisation par une équation différentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.2.2 Caractérisation par une équation fonctionnelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.3 Équation différentielle linéaire du premier ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.3.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.3.2 Résolution de l’équation différentielle homogène normalisée . . . . . . . . . . . . . . . . . . . . . 200
5.3.3 Résolution de l’équation différentielle normalisée avec second membre . . . . . . . . . . . . . . . 202
5.3.4 Détermination de solutions particulières . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Superposition des solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Trois cas particuliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Méthode de variation de la constante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.3.5 Cas général . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.3.6 Méthode d’Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.4 Équations différentielles linéaires du second ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.4.1 Vocabulaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.4.2 Résolution de l’équation différentielle homogène du second ordre dans C.............. 210
5.4.3 Résolution de l’équation différentielle homogène du second ordre dans R.............. 212
5.4.4 Équation différentielle du second ordre avec second membre . . . . . . . . . . . . . . . . . . . . . 213
5.5 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.5.1 Équations différentielles linéaires du premier ordre . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.5.2 Équations différentielles linéaires du second ordre à coefficients constants . . . . . . . . . . . . . . 221
5.5.3 Résolution par changement de fonction inconnue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
5.5.4 Résolution d’équations différentielles par changement de variable . . . . . . . . . . . . . . . . . . 224
5.5.5 Application aux équations différentielles linéaires du premier ordre avec problèmes de raccord
des solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.5.6 Divers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6 Étude des courbes planes 230
6.1 Fonctions à valeurs dans R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.1.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.1.2 Dérivation du produit scalaire et du déterminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
6.2 Arcs paramétrés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.2.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
6.2.2 Étude locale d’un arc paramétrée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Étude d’un point stationnaire avec des outils de terminale, première période . . . . . . . . . . . . 234
Étude d’un point stationnaire avec les développements limités, seconde période . . . . . . . . . . 234
Branches infinies des courbes paramétrées . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
6.2.3 Étude complète et tracé d’une courbe paramétrée . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
6.3 Etude d’une courbe polaire ρ=f(θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
6.3.2 Etude d’une courbe ρ=f(θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
6.3.3 La cardioïde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
6.3.4 La strophoïde droite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.4 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.4.1 Fonctions vectorielles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.4.2 Courbes en coordonnées cartésiennes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
6.4.3 Courbes polaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
7 Coniques 271
7.1 Définitions et premières propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.1.1 Définition monofocale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.1.2 Équation cartésienne d’une conique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
7.1.3 Équation polaire d’une conique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
7.2 Étude de la parabole : e=1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
7.3 Étude de l’ellipse : 0<e<1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
7.4 Étude de l’hyperbole : 1<e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
7.5 Définition bifocale de l’ellipse et de l’hyperbole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
7.6 Courbes algébriques dans le plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
7.7 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
5
1 / 1268 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !