fRf(x+y) =
f(x) + f(y)f(xy) = f(x)f(y)x, y R.
f(1) = (f(1))2, f (1) = 0 f(1) = 1. f (1) = 0,
x∈Rf(x) = f(x)f(1) = 0 f
0.
f f (1) = 1.
f(x2) = (f(x))2≥0, f (x)≥0x≥0x≥y
R, f (x)−f(y) = f(x−y)≥0, f
f(x) = x x ∈Rλ=f(1) = 1
R
f(x∧y) = f(x)∧f(y)
R3.
f(47.1) 0,
R.
0
f(47.1) 0,
f(47.1) [a, b]a < b,
m≤M m ≤f(x)≤M x ∈[a, b].
x∈[0, b −a], x +a∈[a, b], m ≤f(x+a)≤M(47.1) ,
m′=m−f(a)≤f(x)≤M′=M−f(a)
x∈[0, b −a].
n∈N\ {0}x∈0,b−a
n, nx ∈[0, b −a], m′≤f(nx) =
nf (x)≤M′m′
n≤f(x)≤M′
n.
ε > 0, n ≥1m′
n,M′
n
]−ε, ε[x∈0,b−a
n,−ε<f(x)< ε. f
0.
f(47.1)
f(47.1)