f(x+y) = f(x)+
f(y)
f:RR
(x, y)R2, f (x+y) = f(x) + f(y)
(R,+)
f:x7→ ax, a
R Q
(R,+)
Q
f(R,+)
aR,rQ, f (ra) = rf (a).
a= 1, λ =f(1) , f (r) = λr r Q.
f(R,+)
f
fR
Q
(ei)iIR Q fR
f(ej) = 1 f(ei) = 0 iI\ {j}j I,
(47.1)
(R,+)
R
fRf(x+y) =
f(x) + f(y)f(xy) = f(x)f(y)x, y R.
f(1) = (f(1))2, f (1) = 0 f(1) = 1. f (1) = 0,
xRf(x) = f(x)f(1) = 0 f
0.
f f (1) = 1.
f(x2) = (f(x))20, f (x)0x0xy
R, f (x)f(y) = f(xy)0, f
f(x) = x x Rλ=f(1) = 1
R
f(xy) = f(x)f(y)
R3.
f(47.1) 0,
R.
0
f(47.1) 0,
f(47.1) [a, b]a < b,
mM m f(x)M x [a, b].
x[0, b a], x +a[a, b], m f(x+a)M(47.1) ,
m=mf(a)f(x)M=Mf(a)
x[0, b a].
nN\ {0}x0,ba
n, nx [0, b a], mf(nx) =
nf (x)Mm
nf(x)M
n.
ε > 0, n 1m
n,M
n
]ε, ε[x0,ba
n,ε<f(x)< ε. f
0.
f(47.1)
f(47.1)
f(xy) = f(x) + f(y)R
(47.1)
(R,+) (C,+) .
f, g =(f)f h =(f)f
(R,+)
f(R,+) (C,+) .
f0
f
α f (x) = αx x.
(47.1) C C,
(C,+)
z=x+iy C, f (z) = f(x) + f(iy).
f0,
x7→ f(x)y7→ f(iy)
α, β f (x) = αx f (iy) = βy x, y.
f(z) = αz+z
2+βzz
2i=γz +δz,
γ, δ
f0
f(xy) = f(x) + f(y)R
f:RR
(x, y)R2, f (xy) = f(x) + f(y)
R. f = 0 f(0) =
f(x·0) = f(x) + f(0) f(x) = 0 x.
R.
f f (1) = f(12) = 2f(1) , f (1) = 0,0 = f(1) =
f(1)2= 2f(1) f(1) = 0 f(x) = f(1) + f(x)f(x) = f(x)
xR, f
(x, y)R+,2, f (xy) = f(x) + f(y)
R+,
R+,(47.2)
xR+,, f (x) = λx
1
dt
t,
λ
R+,
1x7→ 1
x,ln (x) = x
1
dt
tx > 0.
R(47.2)
f(x) = λln (|x|)xR.
ln(x)>0R+,ln R+,ln (2) >
ln (1) = 0,ln (2n) = nln (2) lim
x+ln (x) = +.
ln 1
x=ln (x) ln x1
x= 0 lim
x0ln (x) = −∞.
ln R+,R,
x7→ ex.
(xRy=ex)(y > 0x= ln (y)) .
ln(x)>0,
(ex)=exxR.
ln (xy) = ln (x) + ln (y)x, y R+,,
(x, y)R2, f (x+y) = f(x)f(y).
f(47.2) R+,, g Rg(t) = f(et)
f(47.2) R+,.
f
f1
fR+,
λ f (x) = λln (x)xR+,.
x7→ xr,
rQx]0,+[
x > 0,lim
n+(n
x) = 1.
n1, un
xR+,, un(x) = nn
x1
vn=unun+1 ]0,1[ ,
]1,[vn(1) = 0.
xR+,\ {1},(un(x))nN
(un(x))n1λ(x)λ(x)=0
x= 1, λ (x)>0x > 1λ(x) = λ1
x<0 0 < x < 1.
f(xy) = f(x) + f(y)R
x > 0, y > 0n1,
un(xy) = un(x) + un(y) + un(x)un(y)
n
λ(47.2) R+,.
x > 0,
x1
xλ(x)x1
λ1
λR+,1
x1.
n
1 = 1 n
1
x=1
n
x, x > 1.
x > 1.
αn(x) = n
x1, αn(x)>0n1
x= (1 + αn(x))n>1 + n(x),
0< αn(x)<x1
n
lim
n+(αn(x)) = 0,lim
n+(n
x) = 1.
x > 1,(n
x)nN
n+1
x < n
x x < xn+1
n=xn
xn
x > 1
1, (x)1. (x)>1, λ ]1, ℓ (x)[
n0n
x > λ n n0, x > λn
nn0lim
n+λn= +. (x) = 1.
vnR+,x > 0
v
n(x) = x1
n1x1
n+1 1=xn1
nxn
n+1 =xn
n+1 x1
n(n+1) 1.
vn]0,1[ ,
]1,[v
n(1) = vn(1) = 0.
vn(x)>0xR+,\ {1}, un(x)<
un+1 (x) (un(x))nNx= 1,
(un(1))nN0.
un(1) = 0, un1
x=n1
n
x1=un(x)
n
xlim
n+(n
x) = 1,
x > 1. x > 1.
1 / 12 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !