Sp, p
K2.
EKn1.
L(E)E, GL (E)
E.
n, m Mm,n (K)m n
K.
m=n, Mn(K)nK,
GLn(K)Mn(K).
Id In
E=L(E, K)E
p2.
p E φ :EpK
k1p(xi)1ip
i̸=k
Ep1
φi:xE7→ φ(x1,··· , xk1, x, xk+1,··· , xp)
E.
φ φ (x1,··· , xp) = 0 (xi)1ipEp
j̸=k1p xi=xj.
p1,Lp(E, K)p E
p= 1,L1(E, K) = E
p1,Lp(E, K)Knp.
Lp(E, K)K
B= (ei)1inE.
φ∈ Lp(E, K) (x1,··· , xp)Ep, j 1p
xj=
n
i=1
xi,jei
p φ,
φ(x1,··· , xp) = φp
i1=1
xi1,1ei1, x2,··· , xp=
p
i1=1
xi1,1φ(ei1, x2··· , xp)
=
p
i1=1
p
i2=1
xi1,1xi2,2φ(ei1, ei2, x3··· , xp)
=
n
i1=1 ···
n
i1n=1
xi1,1···xip,pφei1,··· , eip
=
1i1,···,ipn
xi1,1···xip,pφei1,··· , eip
Φ : φ∈ Lp(E, K)7→ φei1,··· , eip1i1,···,ipnKnp
α=αi1,···,ip1i1,···,ipnKnp,
φ: (x1,··· , xp)7→
1i1,···,ipn
αi1,···,ipxi1,1···xip,p
pΦLp(E, K)Knp.
dim (Lp(E, K)) = np.
φ∈ Lp(E, K)φ(x1,··· , xp) = 0 (xi)1ip
E.
φ(x1,··· , xp)xk
xjj̸=k
p φ E φ xσ(1),··· , xσ(p)=
ε(σ)φ(x1,··· , xp) (x1,··· , xp)Epσ∈ Sp.
φxτ(1),··· , xτ(p)=φ(x1,··· , xp)
τ, Sp
φ∈ Lp(E, K)τ= (j, k) 1 j <
kp.
0 = φ(x1,··· , xj+xk,···, xj+xk,··· , xp)
=φ(x1,··· , xj,···, xj,··· , xp) + φ(x1,··· , xp)
+φxτ(1),··· , xτ(p)+φ(x1,··· , xk,··· , xk,··· , xp)
=φ(x1,··· , xp) + φxτ(1),··· , xτ(p)
φxτ(1),··· , xτ(p)=φ(x1,··· , xp).
xj=xk1j < k p,
τ= (j, k)
φ(x1,··· , xp) = φxτ(1),··· , xτ(p)=φ(x1,··· , xp)
φ(x1,··· , xp) = 0 K2.
E n 1,B= (ei)1inE
xE, X = (xi)1inKx,
x=
n
i=1
xiei
An(E, K)n
1 detB:EnK
detB(x1,··· , xn) =
σ∈Sn
ε(σ)
n
i=1
xσ(i),i
xj=
n
i=1
xijeij1n.
detBn
j1n,
πj:x=
n
i=1
xiei7→ xj
j
detB(x1,··· , xn) =
σ∈Sn
ε(σ)
n
i=1
πσ(i)(xi)
πσ(i)(x1,··· , xn)7→
n
i=1
πσ(i)(xi)n
detBn
τ, k =τ(i),
detBxτ(1),··· , xτ(n)=
σ∈Sn
ε(σ)
n
i=1
πσ(i)xτ(i)
=
σ∈Sn
ε(σ)
n
k=1
πσ(τ1(k)) (xk)
=
σ∈Sn
ε(σ)
n
k=1
πστ1(k)(xk)
σ7→ σ=στSn
detBxτ(1),··· , xτ(n)=
σ∈Sn
ε(στ)
n
k=1
πσ(k)(xk)
=ε(τ)
σ∈Sn
ε(σ)
n
k=1
πσ(k)(xk)
=ε(τ) detB(x1,··· , xn)
detB
φ∈ An(E, K) (x1,··· , xn)En,
φ(x1,··· , xn) =
1i1,···,inn
xi1,1···xin,nφ(ei1,··· , ein) =
γ∈Fn
n
i=1
xγ(i),iφeγ(1),··· , eγ(n)
Fn{1,··· , n} {1,··· , n}.
φ φ xγ(1),···, xγ(n)= 0 γ
φ(x1,··· , xn) =
σ∈Sn
n
i=1
xσ(i),iφeσ(1),··· , eσ(n)
=
σ∈Sn
ε(σ)
n
i=1
xσ(i),iφ(e1,··· , en)
φ=λdetBλ=φ(e1,··· , en)KdetB∈ An(E, K)\ {0}.
An(E, K) 1 detB.
detBn E φ (e1,··· , en) = 1.
detB(x1,··· , xn)
n(xi)1inB.
n φ E, φ =λdetBλ=φ(e1,··· , en),
φ(x1,··· , xn) = φ(e1,··· , en) detB(x1,··· , xn)
(xi)1inEn.
B= (e
i)1inE, (xi)1in
En
detB(x1,··· , xn) = detB(e1,···, en) detB(x1,··· , xn)
= detB(B) detB(x1,···, xn)
detB(B) detB(B) = detB(B) = 1
(xi)1inn E.
(xi)1in
BE, detB(x1,··· , xn) = 0
BEdetB(x1,··· , xn) = 0.
(1) (2) (xi)1inφ(x1,··· , xn)=0
ndetB,
BE.
(2) (3)
(3) (1) BEdetB(x1,··· , xn) = 0.
B= (xi)1inE1 = detB(B) = detB(B) detB(B) = 0,
(xi)1inn E. E
BEdetB(x1,··· , xn)̸= 0.
E.
u∈ L(E), λu
φ∈ An(E, K)\ {0}(xi)1inEn,
φ(u(x1),··· , u (xn)) = λuφ(x1,··· , xn)
λu= detB(u(e1),··· , u (en))
B= (ei)1inE.
u∈ L(E)n
φ∈ An(E, K)\ {0},
φu: (x1,··· , xn)En7→ φ(u(x1),··· , u (xn))
n λuφu=λuφ
dim (An(E, K)) = 1
ψ∈ An(E, K)\ {0}n ψ =ρφ
ψu=ρφu=ρλuφ=λuψ
λun
φ= detBφ= detB,B= (ei)1inB= (e
i)1in
E,
detB(u(e1),··· , u (en)) = λu= detB(u(e
1),··· , u (e
n))
λu
udet (u).
det (u)u E.
(xi)1inEnu∈ L(E)u(ei) = xii1n,
det (u) = detB(u(e1),··· , u (en)) = detB(x1,··· , xn)
B= (ei)1inE.
1 / 28 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !