Programme de khôlles no4
semaine du 10 au 15 octobre
Mots-clefs
Cercle trigonométrique : le cercle trigonométrique S1, les fonctions trigonométriques cos,sin et tan, en-
semble de définition de tan, formules de trigonométrie (parités et symétries, décalages et périodicités, valeurs
remarquables, formules d’Euler, formule de Moivre, factorisation par l’angle moitié, formules d’addition, for-
mules de duplication, formules de bissection, transformation de produits en sommes, transformation de sommes
en produits, inégalités de comparaison).
Fonctions trigonométriques réciproques : les fonctions trigonométriques réciproques arccos,arcsin et
arctan, formules de réciprocité, résolution d’équations et d’inéquations trigonométriques (note aux khôlleurs :
les courbes représentatives n’ont pas encore été vues).
Généralités sur les suites : définition, notation, l’ensemble des suites KN, représentation graphique de suites,
suite constante, suite stationnaire, suite périodique, suite pré-périodique, opérations sur les suites, relation
d’ordre sur les suites réelles, suite minorée, suite majorée, suite bornée, suite croissante, suite strictement
croissante, suite décroissante, suite strictement décroissante.
Suites usuelles : suites arithmétiques, expression du terme général d’une suite arithmétique, somme des
termes d’une suite arithmétique, suites géométriques, expression du terme général d’une suite géométrique,
somme des termes d’une suite géométrique, suite arithmético-géométrique, expression du terme général d’une
suite arithmético-géométrique, suite récurrente linéaire d’ordre deux, expression du terme général d’une suite
récurrente linéaire d’ordre deux.
Savoir-faire
Déterminer un argument d’un complexe (à l’aide d’une équation trigonométrique ou d’une factorisation par
l’angle moitié).
Simplifier acos(θ) + bsin(θ).
Linéariser cosp(θ) sinq(θ)(note aux khôlleurs : la formule du binôme de Newton n’a pas encore été vue).
Développer cos()et sin()(note aux khôlleurs : idem).
Transformer un produit de cosinus ou sinus en somme.
Transformer une somme de cosinus ou sinus en produit.
Résoudre des équations et des inéquations trigonométriques à l’aide des fonctions trigonométriques réciproques.
Calculer l’expression du terme général d’une suite arithmético-géométrique.
Calculer l’expression du terme général d’une suite récurrente linéaire d’ordre deux.
— Étudier une suite récurrente du type un+1 =f(un)(note aux khôlleurs : il est seulement attendu la
représentation graphique des premiers termes de la suite et les preuves par récurrence de conjectures sur
la bonne définition de la suite, sa monotonie et l’existence de minorant ou majorant ; aucune étude de la
convergence de la suite pour le moment).
Exemples de questions de cours
Rappeler des formules de trigonométrie.
Rappeler les définitions des fonctions arccos,arcsin et arctan.
Montrer que (un)n>n0est bornée si et seulement si (|un|)n>n0est majorée.
Montrer qu’une suite bornée à partir d’un certain rang est bornée.
Rappeler et démontrer par récurrence la formule de la somme des termes d’une suite arithmétique ou géomé-
trique.
Rappeler et démontrer la formule du terme général d’une suite arithmético-géométrique.
Rappeler et démontrer par récurrence double la formule du terme général d’une suite récurrente linéaire d’ordre
deux dans l’un des trois cas selon le signe du discriminant de l’équation caractéristique associée (note aux
khôlleurs : on admet qu’il existe un unique couple solution du système linéaire qui permet de déterminer les
constantes et d’initialiser la récurrence).
BCPST 1A lycée Hoche 2016-2017 Sébastien Godillon
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !