Des ondes électromagnétique qui viennent du système Dynamo au

publicité
29/09/2015___(mise à jour 30/12/2015)
Des ondes électromagnétique qui viennent du système Dynamo au
centre de la terre ?
Dabord l’équation du champ B_0 (le champ B induit).
Si on prend l’équation de l’induction MHD
solutions de l’induction
Rot ( E 0 )=
∂ B0
Δ B0
= Rot (v ∧ B)+
et qu’on applique les
∂t
μ0 σ
E=v ∧ B dans l’équation de l’induction (Maxwell/Faraday) , sa donne :
−∂ B 0
Δ B0
∂ B0
=
→ Δ B 0 =2μ 0 σ
.
∂t
−2μ0 σ
∂t
(Sa aide à trouver la solution du champ de vitesse dans l’équation Navier-Stokes)
____________________________________________________
Solution d’ondes électromagnétique (J=0).
Solution en E.
On a
ROT ( E )=
−Δ B
2 μ0 σ &
ROT ( B)=μ0 ϵ0
∂B
→
∂t
Δ B=−2μ0 σ ROT ( E)
Ensuite on applique le rotationnel sur les 2 membres.
ROT (Δ B)=Δ ROT ( B)=−2μ0 σ ROT ROT ( E)=−2 μ0 σ [(Grad ( D iv ( E))−Δ E)]
Div(E)=0 donc l’équation se simplifie en éliminant le laplacien , et on a une solution de E.
ROT ( B)=−2μ 0 σ E=−ϵ0 μ0
∂E
→
∂t
E=
ϵ ∂E
2σ ∂t
Solution en B .
∂E
On a ROT ( B)=ϵ0 μ0 ∂ t , en remplace E par la solution , sa donne :
ROT ( B)=
ϵ0² μ0 ∂ ² E
ensuite on applique le rotationnel au 2 membres .
2 σ ∂ t²
Rot Rot ( B)=Grad [ D iv ( B)]−Δ B=
simplifie −Δ B=
ROT ( E )=
ϵ 0 ² μ0 ∂ ² Rot ( E )
Et comme Div(B)=0 , l’équation se
2σ
∂ t²
ϵ0 ² μ0 ∂ ² Rot ( E)
, maintenant on remplace Rot(E) par
2σ
∂ t²
−Δ B
2 μ0 σ , sa donne
−Δ B=
−ϵ 0 ² ∂ ² Δ B
.
4 σ ² ∂ t²
reste à sortir le laplacien et simplifié .
−Δ B=Δ
−ϵ 0 ² ∂ ² B
→
4 σ ² ∂ t²
B=
ϵ0 ² ∂ ² B
.
4σ ² ∂ t²
On peut facilement vérifié que si les champ
E=
ϵ ∂E
&
2σ ∂t
B=
ϵ0 ² ∂ ² B
4 σ ² ∂ t²
bien des solutions de l’équation des ondes électromagnétique → Δ X =ϵ0 μ0
existent , se sont
∂² X
∂ t²
_____________________________________________________
Remarque : si c’est correct du point de vue théorique et qu’on captent rien à la surface c’est peut
étre que les longueurs d’onde sont soit trop petite pour remonter ou alors trop grande pour étre
détecter par des matériaux conducteur classique .
_____________________________________________________
https://www.youtube.com/watch?v=xbhZGChxZpE
_______________________________________________
Mon ptit Bullard
j’aime bien se petit model , c’est surement un des élément d’un systeme à énergie libre qu’il faut
trouver .
On a une spire qui renvoie un champ magnétique vers un disque conducteur qui fourni un courant
par effet hall qui induit le champ magnétique ___ a une certaine vitesse de rotation le champ B
s’auto entretient en posant qu’il y a eu un champ B_0 initial indépendant du système (ou un champ
E extérieur qui a généré un courant I_0).
J’ai regardez un peut les informations sur le systeme en terme de champ et comme c’est un peut
compliqué je pense que j’ai simplifié le model .(faut vérifié le raisonement)
D’abord l’équation du courant qui circule dans le système :
L
dI
= I ( M ω− R)
dt
dans le premier membre on a l’opposé de la force électromotrice induite -e le long de la courbe
fermer (spire + rayon du disque) , et dans le 2ieme membre on peut exprimer I avec le thm de
Gauss .
c.a.d
⃗ et
⃗ . dl
e=−∮ E
I=
dq
∂⃗
E ⃗
=∯ ϵ 0
. ds , et en utilisant le THM de stock on a :
dt
∂t
⃗ ∯ ( M ω−R)ϵ 0 ⃗
⃗
⃗ . ds=
−∬ Rot E
E . ds
Dans le système , le flux a travers la surface fermer contient le flux du premier membre donc on
peut éliminé les intégrale .
Sa donne l’équation du champ électrique induit __(concernant la vitesse angulaire c’est une
variable indépendante pour le moment qu’il faudra coupler plus tard au temp).
∂⃗
E
Rot ( ⃗
E )=ϵ0 (R− M ω)
∂t
(1)
On cherche maintenant l’équation du champ B induit en utilisant les propriété d’un champ
électromagnétique formalisé dans les équations de Maxwell .
∂⃗
B
∂⃗
B
∂⃗
E
⃗
→
qu’on peut reporter dans
=ϵ 0 ( M ω− R)
∂E
∂t
ϵ0
=
∂t
∂t
∂ t (M ω− R)
l’équation Maxwell Ampère pour avoir l’équation du champ B induit en question .
−∂ ⃗
B
→
Rot ( ⃗
E )=
∂t
(2) ( M ω−R) Rot ( ⃗
B )=μ0 [( M ω−R) ⃗J +
∂⃗
B
] .
∂t
(Si la logique est bonne , cette représentation est plus adapter ) .
_________________________________________
On peut peut étre simplifié encore l’équation en B :
On a
⃗
∂⃗
B
∂E
=ϵ 0 ( M ω−R)
donc on peut éliminer la dérivé partiel pour avoir la relation
∂t
∂t
⃗
B=ϵ 0 ( M ω− R) ⃗
E
On voit que les champs sont dans le mème sens lorsque ω0 =
R
donc c’est à partir de se moment
M
que commence l’effet dynamo.
⃗
B
dans l’équation de l’induction et
ϵ0 (M ω− R)
comparer avec la valeur du rotationel de B dans l’équation de Maxwell Ampère .
Pour avoir l’équation du champ B on reporte
Sa donne
Rot ( ⃗
B)
−∂ ⃗
B
=
→
ϵ0 ( M ω−R)
∂t
on remplace E par
⃗
E=
⃗
E=
∂⃗
B
∂⃗
E
Rot ( ⃗
B )=−ϵ0 ( M ω−R)
=μ0 J + ϵ0 μ O
∂t
∂t
⃗
B
pour avoir l’équation
ϵ0 (M ω− R)
−ϵ20 (M ω−R)2
∂⃗
B
∂⃗
B
on regroupe et on a l’intégral du
=ϵ 0 ( M ω− R)μ0 J +ϵ0 μO
∂t
∂t
champ B
[ϵ0 μ0 +ϵ 20 ( M ω− R)2 ]
∂⃗
B
=ϵ 0 ( R− M ω)μ0 ⃗J →
∂t
⃗
B =−∫
μ0 ( M ω−R) ⃗J (t )
μ0 +ϵ 20 [ M ω−R]2
dt
comme la vitesse angulaire reste une donné extérieur au systeme ..(c’est une convention qui vient
d’une action extérieur) .., on peut sortir le facteur de l’intégral .
→
⃗
B =−
μ 0 ( M ω−R)
μ0 +ϵ 20 [ M ω−R]2
(Suite plus tard)
Le conseiller du Führer
FB
∫ ⃗J (t )dt
Téléchargement