télécharger le PDF

publicité
c Éditions H&K
Publié dans les Annales des Concours
1/26
X/ENS Physique PSI 2009 — Corrigé
Ce corrigé est proposé par David Chapot (Professeur agrégé) ; il a été relu par
Emmanuel Bourgeois (Professeur en CPGE) et Rémy Hervé (Professeur agrégé en
école d’ingénieur).
Ce sujet traite de la description de milieux continus à l’aide de composants discrets
dans les domaines de l’électromagnétisme et de la thermodynamique.
• La première partie est consacrée à l’étude des ondes électromagnétiques dans
un câble coaxial puis à la représentation de ce dernier par une ligne à constantes
réparties ou par des composants discrets. On s’intéresse dans un premier temps
au cas où les pertes sont négligeables, puis au cas des ondes atténuées ou amplifiées et, enfin, aux « milieux paradoxaux » dans lesquels l’énergie des ondes
électromagnétiques se propage dans le sens opposé de celui des ondes qui la
transportent.
• Dans la deuxième partie, on s’intéresse à une modélisation électrique de la diffusion thermique dans un milieu unidimensionnel. Dans le domaine des hautes
fréquences, on assiste à un effet thermique particulier : le flux thermique peut
s’effectuer des zones de basse température vers celles de température plus élevée,
ce qui est en apparence contraire au second principe de la thermodynamique.
• La dernière partie reprend le cas d’un transfert thermique « du froid vers le
chaud » avec l’exemple d’une machine frigorifique. Elle s’achève par l’analyse
des propriétés d’une ligne continue de micromachines frigorifiques, qui permet
de réaliser des matériaux aux propriétés particulières.
Ce sujet fait appel au programme d’électrocinétique et de thermodynamique des
machines thermiques et exige de maîtriser les bilans sur les systèmes fermés ainsi
que le calcul différentiel. Il comporte de nombreuses questions dont les réponses
nécessitent une bonne culture scientifique et une réflexion hors des sentiers battus.
L’énoncé annonce la plupart des réponses attendues mais recèle des ambiguïtés et
des imprécisions qui rendent le cheminement difficile.
Téléchargé gratuitement sur www.Doc-Solus.fr .
c Éditions H&K
Publié dans les Annales des Concours
2/26
Indications
Partie I
2 Penser à exploiter les relations de passage pour le champ électromagnétique à
travers la surface du conducteur interne.
3 L’intensité i(z, t) se détermine à partir du théorème d’Ampère appliqué sur un
périmètre du conducteur intérieur.
4 Appliquer la loi des mailles et la loi des nœuds au circuit puis effectuer un développement limité à l’ordre 1 en dz.
5 Le flux d’énergie est dans la direction du vecteur de Poynting moyen de l’onde.
6 La densité linéique de la ligne se détermine à partir des expressions usuelles des
énergies stockées par une inductance et un condensateur.
7 Établir l’équation de dispersion du milieu. Montrer qu’elle n’est équivalente à celle
de la ligne à constantes réparties que si k a ≪ 1.
9 Écrire le vecteur d’onde k donné par la relation de dispersion sous la forme
k = k + j k ′ et faire le lien entre le signe de k ′ et une éventuelle atténuation.
14 Le montage à AOIPL sert à inverser le sens du courant entre les bornes ⊖ et ⊕
(cf. question 10) ; toutes les impédances sont donc remplacées par leur opposée.
Partie II
19 Effectuer un bilan thermique sur une tranche de conducteur Σ comprise entre z
et z + dz.
21 Considérer que la température doit évoluer sur une distance grande devant a.
22 Introduire l’inductance linéique thermique Λth grâce à la relation Lth = a Λth /Σ,
qu’il faut justifier.
24 Montrer que j th et ∂T(z)/∂z peuvent être de même signe en régime sinusoïdal.
Partie III
26 Les transferts thermiques à travers les deux résistances thermiques R0 ne sont
possibles que si TC ′ > TC et TF ′ 6 TF , ce qui conduit à une inégalité sur ∆T0 .
27 L’efficacité d’une machine thermique est le rapport de la grandeur utile et de la
grandeur qui a un coût.
28 Travailler à puissance constante. Lorsque la taille de la machine diminue, comment
évoluent les échanges thermiques ?
29 Appliquer la condition de réversibilité de la machine ditherme interne.
Attention : les résultats annoncés par l’énoncé contiennent deux erreurs de signe
dues à celles commises sur les expressions de R0 dans la figure de la question 25 :
R0 =
TC ′ − TC
TF − TF ′
=
PthC
PthF
34 Remarquer que la micromachine étudiée est identique à celle de la question 21.
38 Utiliser les résultats des questions 33 et 35 pour établir une équation différentielle
linéaire du premier ordre en T(z). L’intégrer en appliquant la méthode de la
variation de la constante.
Téléchargé gratuitement sur www.Doc-Solus.fr .
c Éditions H&K
Publié dans les Annales des Concours
3/26
I. Propagation des ondes électromagnétiques
A.
Propagation dans un câble coaxial sans pertes
1 Dans le vide, les densités volumiques de charge et de courant sont nulles en tout
point M et à chaque instant t ; par conséquent, les équations de Maxwell s’écrivent


→
−



div E (M, t) = 0
Maxwell-Gauss




→
−


→
∂ B (M, t)
→−

−
rot E (M, t) = −
Maxwell-Faraday
∂t

→
−



div B (M, t) = 0
Maxwell-flux




→
−


→
∂ E (M, t)
→−

−
rot B (M, t) = ε0 µ0
Maxwell-Ampère
∂t
Pour alléger l’écriture, on ne précise plus les variables M et t.
En formant le rotationnel de l’équation de Maxwell-Faraday, on obtient :
−
→
→
−→ −→ −
−→ ∂ B
rot (rot E ) = − rot
∂t
En notant que les dérivées partielles par rapport aux variables spatiales et temporelle
→
−→ −
commutent et en remplaçant rot B grâce à l’équation de Maxwell-Ampère, il vient
→
−
→
∂2 E
−→ −→ −
rot (rot E ) = −ε0 µ0
∂t2
Compte tenu des identités
−−→
→
→
−
→
−
1
−→ −→ −
ε 0 µ0 = 2
et
rot (rot A ) = grad (div A ) − ∆ A
c
→
−
pour tout champ de vecteurs A , on obtient
→
−
−−→
→
−
→
−
1 ∂2 E
grad (div E ) − ∆ E = − 2
c ∂t2
→
−
Comme div E = 0 d’après l’équation de Maxwell-Gauss, on aboutit à l’équation de
propagation du champ électrique :
→
−
−
→
1 ∂2 E
∆E = 2
c ∂t2
De même, le rotationnel de l’équation de Maxwell-Ampère s’écrit
→
−→ −
→
1 ∂ rot E
−→ −→ −
rot (rot B ) = 2
c
∂t
D’après l’équation de Maxwell-Faraday, on obtient
→
−
→
1 ∂2 B
−→ −→ −
rot (rot B ) = − 2
c ∂t2
Téléchargé gratuitement sur www.Doc-Solus.fr .
c Éditions H&K
Publié dans les Annales des Concours
4/26
→
−
et, comme précédemment, en notant que div B = 0 d’après l’équation de Maxwellflux, on arrive à l’équation de propagation du champ magnétique :
→
−
→
−
1 ∂ 2 B (M, t)
∆ B (M, t) = 2
c
∂t2
On recherche désormais des solutions particulières aux équations de propagation
sous la forme d’ondes planes monochromatiques homogènes progressives de pulsa→
−
→ (k > 0) :
tion ω et de vecteur d’onde k = k −
u
z
−
→
−
→
−
→
−
→
E = E0 e j (ωt−kz) et B = B0 e j (ωt−kz)
−
→
−
→
où E0 et B0 sont constants et uniformes. On a alors
→
−
→ ∂2 E
−
→
−
∆E =
= (−jk)2 E
2
∂z
Par conséquent,
→
−
→
−
∂2 E
= (jω)2 E
2
∂t
−
→
−
→
1
(−jk)2 E0 e j (ωt−kz) = 2 (jω)2 E0 e j (ωt−kz)
c
Après simplification, il vient
c’est-à-dire
et
k2 =
ω2
c2
k=
ω
c
On choisit k > 0 car la valeur négative correspond à des ondes qui se
→.
propagent dans le sens −−
u
z
Cette relation, que l’on peut également obtenir à partir de l’équation
de propagation du champ magnétique, correspond à un cas où il n’y a pas
dispersion (la vitesse de phase vϕ = ω/k = c ne dépend pas de ω).
2 Dans les conducteurs intérieur et extérieur supposés parfaits, les champs électrique et magnétique sont nuls. Lors de la traversée des conducteurs, la composante
tangentielle du champ électrique et la composante normale du champ magnétique
sont continues, donc nulles ici, ce qui se traduit par
→ −
−
→ −
−
→
→=−
→=0
E ∧u
0
et
B ·u
r
r
Ces deux conditions sont effectivement vérifiées par les champs proposés.
Si les conducteurs ne sont pas parfaits – c’est-à-dire s’ils ont une conductivité finie σ – il se produit le phénomène d’effet de peau. Le champ électro√
magnétique pénètre dans les conducteurs sur une épaisseur δ = 1/ µ0 σ ω
dans laquelle de l’énergie est dissipée par effet Joule.
Dans la suite, l’énoncé demande de vérifier que chacun des deux
−
→ −
→
champs E et B obéit au théorème de Gauss et à celui d’Ampère ; en fait, il
faut seulement s’assurer que les champs électrique et magnétique obéissent
respectivement à ces deux théorèmes.
Téléchargé gratuitement sur www.Doc-Solus.fr .
Téléchargement