g=f−αId Id Cn
Partie III : Le cas k= 0
k= 0 T α
7 . a) i∈J2, nKg(ei)e1, . . . , ei−1
b) gngmg◦ ··· ◦ g g
m
p1
gp
8. p= 1 At
A
p6= 1 u gp−1(u)6= 0
up=u, up−1=g(u), . . . , u1=gp−1(u)
9. (u1, . . . , up)
10. p=n
a) M f C= (u1, u2, . . . , un)M0f
C0= (un, un−1, . . . , u1)Cn
b) At
A
11. p<n (u1, . . . , up) (u1, . . . , un)
CnU g P k
Uk−1
a) i P i >p+ 1
P
b) j k 1p gk−1(uj)k < j k =j k > j
p k P
c) P p
h P (u1, . . . , un)CnW
(u1, . . . , up)
d) v∈W h(v) = v
e) W h Cn
f) g f
Partie IV : Le cas général
k
12. gBT1B
0T2T1
T2k n −k T n−k
2
T1
13. gn−kBTn−k
1B0
0Tn−k
2
G gn−k
14. FCn(e1, . . . , ek)
a) F G Cn
b) F G g f