R2
A={(x, y)∈R2|x2−y2−2xy ≤1},
B={(x, y)∈R2|x2+y2+ 3exy ≤1},
C={(x, y)∈R2|2 cos(x) + 2 sin(x)>3}.
Mn(R)k(mij )k= max |mij |
On⊂Mn(R)n×n
(mij )∈O(i, j)|mij | ≤ 1
O
Mn(R)
E(Kn)nE
Kn+1 ⊂Knn K =TnKnO K ⊂O
n Kn⊂O
(xn)n∈EN∀n xn∈Knxn→x∈E x ∈K
6⊂
KnK0
K
E
S={v∈E| kvk= 1}E B ={v∈E| kvk ≤ 1}
B S
S(vn)nB
ϕ:N→N(kvϕ(n)k)n
(vn)nB
X= [0,1]N[0,1] N
[0,1] u v ∈X d∞(u, v) = supk∈N|u(k)−v(k)|δnX
δn(k) = 1k=n
0
d∞(δn, δm)n m
(δn)n∈XN
X
Esup
E
X= [0,1]N[0,1] N
[0,1] u v ∈X
d(u, v) =
+∞
X
k=0
|u(k)−v(k)|
2k.
(un)nX ϕk:
N→Np(un(0))n(un(p))nϕ0◦ · · · ◦ ϕp
ψ(n) = ϕ0◦ · · · ◦ ϕn(n)n
k∈N(ψ(n))n≥k(ϕ0◦ · · · ◦ ϕk(n))n
(uψ(n)(k))nk
(uψ(n))n∈XNX d
(X, d)