R2
A={(x, y)R2|x2y22xy 1},
B={(x, y)R2|x2+y2+ 3exy 1},
C={(x, y)R2|2 cos(x) + 2 sin(x)>3}.
Mn(R)k(mij )k= max |mij |
OnMn(R)n×n
(mij )O(i, j)|mij | ≤ 1
O
Mn(R)
E(Kn)nE
Kn+1 Knn K =TnKnO K O
n KnO
(xn)nENn xnKnxnxE x K
6⊂
KnK0
K
E
S={vE| kvk= 1}E B ={vE| kvk ≤ 1}
B S
S(vn)nB
ϕ:NN(kvϕ(n)k)n
(vn)nB
X= [0,1]N[0,1] N
[0,1] u v X d(u, v) = supkN|u(k)v(k)|δnX
δn(k) = 1k=n
0
d(δn, δm)n m
(δn)nXN
X
Esup
E
X= [0,1]N[0,1] N
[0,1] u v X
d(u, v) =
+
X
k=0
|u(k)v(k)|
2k.
(un)nX ϕk:
NNp(un(0))n(un(p))nϕ0 · · · ϕp
ψ(n) = ϕ0 · · · ϕn(n)n
kN(ψ(n))nk(ϕ0 · · · ϕk(n))n
(uψ(n)(k))nk
(uψ(n))nXNX d
(X, d)
f: [a, b]Rmn(f) = Rb
af(t)tndt n N
Rb
af(t)P(t)dt= 0 P
f f = 0
f f = 0
f:R+RLf :R
+R
(Lf)(s) = Z+
0
f(t)estdt.
s0>0 (Lf)(s0+n)=0 nN
R1
0us0+n1f(ln u)du= 0 n
f= 0
CR2
C
PC C \ {P}
f:CR
f(C) [a, b]
R2R
R2R
f:R2RaRA=f1({a})
BR2f(B)f(cB)
f(cA)A
Mn(K)
GLn(K)Mn(K)
GLn(K)
GLn(R)
GLn(R)Mn(R)
M /GLn(C) 0n
GLn(C)
MGLn(C)InGLn(C)
C C0[0,1]
I= [a, b]R
T(I) = a, a +1
3(ba)ta+2
3(ba), b.
A=FIkT(A) = ST(Ik)
Cn=Tn([0,1]) C=TnCn
X={0,1,2}Nπ:X[0,1]
π((ak)k) =
X
k=1
ak
3k.
C0=π(Y)Y={0,2}NX π Y
F:R[0,1[
C1C2C3
3·Cn=Cn1(2 + Cn1)
π(Y)Cnn
F(3n1·Cn)C1Cπ(Y)
C=C0
C
CRC
Y Y
Leb(C) = 0 Leb
x < y C z ]x, y[z /C
C
C
f: [0,1] RC
|f(x)f(y)| ≤ C|xy|x y [0,1] Lip(f)C
Lip(f) = sup
x6=y
|f(x)f(y)|
|xy|.
E[0,1] R0
Lip E
fEkfkLip(f)
(fn)n(E, Lip)
(fn)nf: [0,1] R
(fn)nE f : [0,1] R
Lip(fpfq)L p q Lip(fpf)L f E
(E, Lip)
1 / 3 100%