uK
rg(u)=1
u x /∈Ker u
Vect(x)⊕Ker u=E
u(x)∈E u(x) = λx +y y ∈Ker u
u2(x) = λu(x)
u2λu Vect(x)
Ker u E
y∈Im(u)\ {0}y=u(a)
u(y) = u2(a) = λu(a) = λy
λ u
λ∈Sp(A)X6= 0 AX =λX
i∈ {1, . . . , n} |xi|= max1≤k≤n|xk|xi6= 0
|λxi|=
n
X
j=1
ai,j xj≤
n
X
j=1 |ai,j ||xi| ≤ kAk|xi|
|λ| ≤ kAk
X=t(1 . . . 1)
λ∈Sp(A)X=t(x1. . . xn)i0
|xi0|= max
1≤i≤n|xi|
|xi0| 6= 0 AX =λX λxi0=Pn
j=1 ai0,j xj
|λ||xi0|=
n
X
j=1
ai0,j xj≤
n
X
j=1 |ai0,j ||xj| ≤
n
X
j=1
ai0,j |xi0|=|xi0|
|λ| ≤ 1
|λ|= 1
|xj|=|xi0|j
ai0,j 6= 0
θ∈Rj∈ {1, . . . , n}
ai0,j xj=ai0,j |xj|eiθ
j∈ {1, . . . , n}ai0,j xj=ai0,j |xi0|eiθ
ai0,j 6= 0
λxi0=Pn
j=1 ai0,j xj
λxi0=|xi0|eiθ
j∈ {1, . . . , n}ai0,j 6= 0 xj=λxi0
i1=j
|xi1|= max1≤i≤n|xi|(ip)∈ {1, . . . , n}Nλxip=xip+1
p∈Nq∈N∗ip=ip+q
λq= 1
L=
1 (0)
1··· 1
U=
1··· 1
(0) 1
=tL
U=I+N+··· +Nn−1(I−N)U=I U−1=I−N
L−1=t(U−1) = I−tN A−1=U−1L−1=I−N−tN+NtN
A−1=
2 1 (0)
1
2 1
(0) 1 1