A∈ Mn(K) rg(A)=1 λKA2=λA
λ A
A∈ Mn(R)
kAk= sup
1in
n
X
j=1 |ai,j |
Sp(A)[kAk;kAk]
A= (ai,j )∈ Mn(R)i, j ∈ {1, . . . , n}ai,j R+
i∈ {1, . . . , n}Pn
j=1 ai,j = 1
1Sp(A)
λCA|λ| ≤ 1
λCA|λ|= 1 λ
A∈ Mn(R)A= (min(i, j))1i,jn
L
U A =LU
A1
N=
0 1 (0)
1
(0) 0
Sp A1[0 ; 4]
0··· 0 1
0··· 0 1
1··· 1 1
∈ Mn(R)
n3
A=
0 (0) 1
1
1
1 (0) 0
∈ Mn(R)
A A2
fRnA
Ker fIm f=Rn
A
0 (0)
0
(0) B
BGL2(R)
tr Btr B2
B A
A
(a0, . . . , ap1)Cp
P(X) = Xpap1Xp1+··· +a1X+a0
(un)nNp
u0, . . . , up1
un+p=ap1un+p1+··· +a1un+1 +a0un
(un)nN
tCom(A)A= det(A)In
A n det(A)
AtCom(A)
A
dim Ker tCom A
tCom A
uK
rg(u)=1
u x /Ker u
Vect(x)Ker u=E
u(x)E u(x) = λx +y y Ker u
u2(x) = λu(x)
u2λu Vect(x)
Ker u E
yIm(u)\ {0}y=u(a)
u(y) = u2(a) = λu(a) = λy
λ u
λSp(A)X6= 0 AX =λX
i∈ {1, . . . , n} |xi|= max1kn|xk|xi6= 0
|λxi|=
n
X
j=1
ai,j xj
n
X
j=1 |ai,j ||xi| ≤ kAk|xi|
|λ| ≤ kAk
X=t(1 . . . 1)
λSp(A)X=t(x1. . . xn)i0
|xi0|= max
1in|xi|
|xi0| 6= 0 AX =λX λxi0=Pn
j=1 ai0,j xj
|λ||xi0|=
n
X
j=1
ai0,j xj
n
X
j=1 |ai0,j ||xj| ≤
n
X
j=1
ai0,j |xi0|=|xi0|
|λ| ≤ 1
|λ|= 1
|xj|=|xi0|j
ai0,j 6= 0
θRj∈ {1, . . . , n}
ai0,j xj=ai0,j |xj|e
j∈ {1, . . . , n}ai0,j xj=ai0,j |xi0|e
ai0,j 6= 0
λxi0=Pn
j=1 ai0,j xj
λxi0=|xi0|e
j∈ {1, . . . , n}ai0,j 6= 0 xj=λxi0
i1=j
|xi1|= max1in|xi|(ip)∈ {1, . . . , n}Nλxip=xip+1
pNqNip=ip+q
λq= 1
L=
1 (0)
1··· 1
U=
1··· 1
(0) 1
=tL
U=I+N+··· +Nn1(IN)U=I U1=IN
L1=t(U1) = ItN A1=U1L1=INtN+NtN
A1=
2 1 (0)
1
2 1
(0) 1 1
χnA1Mn(R)
χn+2(λ) = (2 λ)χn+1(λ)χn(λ)χ0(λ)=1 χ1(λ)=1λ
λ= 2 + 2 cos θ θ [0 ; π]fn(θ) = χn(2 + 2 cos θ)
fn+2(θ) + 2 cos θfn+1(θ) + fn(θ)=0 f0(θ) = 1 f1(θ) = 2 cos θ1
fn(θ) = cos n+1
2θ
cos θ
2
χnn[0 ; 4] n
Sp A1[0 ; 4]
M n 3n= 1 2
rg M= 2 Mn(R) dim E0(M) = n2
λMn(R)X=t(x1···xn)
MX =λX
xn=λx1
xn=λxn1
x1+··· +xn=λxn
λ(λ1)xn=λx1+··· +λxn1= (n1)xn
xn6= 0 xn= 0 λ6= 0 X= 0
λ λ2λ(n1) = 0
λ=1±4n3
2
M n
A2=
1 (0) 0
1
1
0 (0) 1
∈ Mn(R)
A A2
rg A= rg A2= 2
rg f= rg f2dim Ker f= dim Ker f2Ker fKer f2
Ker f= Ker f2
xKer fIm f x =f(a)f(x)=0
aKer f2= Ker f x = 0
Ker fIm f={0E}
Ker fIm f=Rn
Ker fIm f=Rn
A
0 (0)
0
(0) B
B∈ M2(R)
rg A= rg B= 2 B
tr B= tr A= 0 tr B2= tr A2= 2
λ µ B
λ+µ= 0
λ2+µ2= 2
{λ, µ}={1,1}
Sp B={1,1}Sp A={1,0,1}
dim E0(A) = dim Ker A=n2
dim E1(A) = dim E1(B) = 1 dim E1(A)=1
A
n
Xn=tunun+1 ··· un+p1
Xn+1 =AXn
A=
0 1 (0)
(0) 0 1
a0a1··· ap1
(un)
p
L∈ Mp,1(C)
LXn+1 =LXnL L =LA
tLtA
L=a0a0+a1··· a0+··· +ap1
P(1) = 1 (a0+··· +ap1)=0
`(un)nNLXn=LX0
p1
X
k=0
(pk)ak!`=
p1
X
k=0
ak
k
X
j=0
uj
P
P0(1) = p
p1
X
k=0
kak=
p1
X
k=0
(pk)ak6= 0
`=Pp1
k=0 akPk
j=0 uj
P0(1)
tCom(A).A
A n det A
X6= 0 AX =λX λtCom(A)X= (det A)X
λ6= 0 XtCom(A)
det A
λ
Adet A= 0 tCom(A)A= 0
Im AKer tCom A
dim Ker tCom(A)n1 Com A6= 0 rg A=n1
A
dim Ker tCom(A) = n1
n2tCom A
dim Ker tCom(A) = n1
XKer A\ {0}tCom(A+tIn)(A+tIn)X= det(A+tIn)X
t6= 0
tCom(A+tIn)X=det(A+tIn)
tX.
t0+
tCom(A+tIn)XtCom(A)X.
det(A+tIn)
tµ µ
A
tCom(A)X=µX
tCom A2µ
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !