Z+
0
sin t
tdt
π/2
f: [0 ; +[R
Z+
0
f(t) sin(t) dt
x7→ Rx
0sin(et) dt+
Z+
−∞
eit2dt
+
f(λ) = Z1
0
eiλx2dx
x > 0
f(x) = Zx
0
eit2dt=Zx
0
cos(t2) dt+iZx
0
sin(t2) dt
f(x) = eix21
2ix +1
2iZx
0
eit21
t2dt
f λ +
g(x) = λf(x)x > 0
g(x) = 1
2iZ+
x
eit2
t2dteix2
2ix
+
g(x) = eix2
2ix + O 1
x3
f: [0 ; +[R
Z+
0
f(t) dt
lim
x+
1
xZx
0
tf(t) dt
f: [1 ; +[R
Z+
1
f(t) dt=Z+
1
f(t)
tdt
f: [0 ; +[Rα > 0
Z+
0
f(t) dt=Z+
0
f(t)
1 + tαdt
f: [a; +[RfC1+
g: [a; +[RMR+
x[a; +[,Zx
a
g(t) dtM
Z+
a
f(t)g(t) dt
]0 ; +[
]0 ; 1]
ZA
1
sin t
tdt=cos t
tA
1ZA
1
cos t
t2dt
A+
Z+
1
sin t
tdt
(Sn)
Sn=Z
0
f(t) sin(t) dt
Sn=
n1
X
k=0 Z(k+1)π
f(t) sin(t) dt
Z(k+1)π
f(t) sin(t) dt=Zπ
0
f(t+kπ) sin(t+kπ) dt= (1)kvk
vk=Zπ
0
f(t+kπ) sin(t) dt
f(vk)
f(vk)
f+
0vkf(kπ)π
(vn)
(1)kvk(Sn)S
X0nXX/π
ZX
0
f(t) sin(t) dt=SnX+ZX
nXπ
f(t) dt
0ZX
nXπ
f(t) dtZX
nXπ
f(nXπ) dt=f(nXπ)(XnXπ)f(nXπ)π
X+nX+SnXS
ZX
nXπ
f(t) dt0
ZX
0
f(t) sin(t) dtS
Zx
0
sin(et) dt=Zx
0
etsin(et)etdt=cos(et)etx
0Zx
0
cos(et)etdt
cos(ex)ex
x+0
t7→ cos(et)et[0 ; +]
t2cos(et)et
t+0
R+
0sin(et) dt
Z+
0
eit2dt=Z+
0
2t
2teit2dt
Z+
0
eit2dt=Z+
−∞
2t
2teit2dt="eit21
2it#+
0
+1
2i Z+
0
eit21
t2dt
2teit2
Z+
0
eit2dt
C1t=λx
f(λ) = 1
λZλ
0
eit2dt
u=t2
ZA
0
eit2dt=1
2ZA2
0
eiu
udu
ZA
0
eit2dt=1
2 eiu1
iuA
0
+1
2ZA2
0
eiu1
iu3/2du!
ZA
0
eit2dt=i
4ZA2
0
1eiu
u3/2du
ZA
0
eit2dt
A+
C
C
f(λ)
λ+
C
λ
C
x > a > 0
Zx
a
eit2dt=Zx
a
2it
2iteit2dt="eit21
2it #x
a
+Zx
a
eit21
2it2dt
a0
Zx
a
eit2dtZx
0
eit2dt, eia21
2ia a
20
Zx
a
eit21
2it2dtZx
0
eit21
2it2dt
f(x) = eix21
2ix +1
2iZx
0
eit21
t2dt
eix21
2ix 1
x0Zx
0
eit21
2it2dtZ+
0
eit21
2it2dt
f(x)λ=Z+
0
eit21
2it2dt
g(x) = λf(x) = 1
2iZ+
x
eit21
t2dteix21
2ix
g(x) = 1
2iZ+
x
eit2
t2dt1
2iZ+
x
1
t2dteix21
2ix
g(x) = 1
2iZ+
x
eit2
t2dteix2
2ix
Z+
x
eit2dt
t2=Z+
x
teit2dt
t3="eit2
2it3#+
x
+3
2iZ+
x
eit2dt
t4
Z+
x
eit2dt
t2
=eix2
2ix3+3
2iZ+
x
eit2dt
t41
2x3+3
2Z+
x
dt
t4=1
x3
Z+
x
eit2dt
t2= O 1
x3
F f
F(x)
x+`=Z+
0
f(t) dt
1
xZx
0
tf(t) dt=F(x)1
xZx
0
F(t) dt
1
xZx
0
F(t) dt`1
xZx
0|F(t)`|dt
ε > 0AR+
tA, |F(t)`| ≤ ε
[0 ; A]|F(t)`|M > 0
xmax(A, AM)
1
xZx
0|F(t)`|dt=1
xZA
0|F(t)`|dt+1
xZx
A|F(t)`|dt2ε
1
xZx
0
F(t) dt
x+`
lim
x+
1
xZx
0
tf(t) dt= 0
f
f[1 ; +[
f F f
+
ZA
1
f(t)
tdt=F(t)
tA
1
+ZA
1
F(t)
t2dt
F(A)/A
A+
0t7→ F(t)/t2[1 ; +[F
+t7→ f(t)/t
[1 ; +[
F f [0 ; +[
Z+
0
f(t)
tα+ 1 dt=F(t)
tα+ 1+
0
+αZ+
0
F(t)tα1
(tα+ 1)2dt
R+
0f(t) dt F
+
+F[0 ; +[ +
t+
F(t)tα1
(tα+ 1)2= O 1
tα+1
α > 0
R+
0
f(t)
1+tαdt
G(x) = Zx
a
g(t) dt
Zx
a
f(t)g(t) dt= [f(t)G(t)]x
aZx
a
f0(t)G(t) dt
1 / 6 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !