p n
p−√n < 4
√4n
N= 1829
B={2,5,7}43,49,52,53, . . .
ρ
n p
n
x1, x2, . . . , xi, . . . Z/nZxi=xjmod p i < j
npgcd(xi−xj, n)
N
1/2√N
n
xix1
xi+1 =P(xi)P∈Z[X]
xi=xjmod p=⇒xi+1 =xj+1 mod p
xi=xjmod p i < j xu=x2umod p
u u < j
(xi+1, x2(i+1)) (xi, x2i)
(xi)
Z/nZ√p
≤n n
n= 7171 x1= 39 P(x) = x2+ 1
d p q
n p q
e ϕ(n)n p
q d
d n
e d n B ϕ(n)
λ= ppcm(p−1, q −1) a∈(Z/nZ)×, aλ= 1
aλ/2n