Contents iv
5.1.1 Origin of circular dichroism . . . . . . . . . . . . . . . . . . . 47
5.1.2 Applications and link with experiment . . . . . . . . . . . . . 50
5.2 Theory: gauge-invariant circular dichroism . . . . . . . . . . . . . . . 52
5.3 Results................................... 57
5.4 Conclusions ................................ 60
6 Rotational g-tensor and NMR shielding constants 63
6.1 Rotational g-tensor............................ 63
6.2 NMRshieldingtensor........................... 65
6.3 Conclusions ................................ 68
7 Implementation 69
7.1 Amsterdam Density Functional . . . . . . . . . . . . . . . . . . . . . 69
7.2 Magnetizability .............................. 70
7.3 Circulardichroism ............................ 72
8 Periodic systems 77
8.1 Polarization................................ 78
8.2 Magnetization............................... 80
8.2.1 Analogy with the polarization case . . . . . . . . . . . . . . . 80
8.2.2 Possible strategies . . . . . . . . . . . . . . . . . . . . . . . . . 83
Summary 85
Appendices 87
A Origin dependence of the dipole moments 89
A.1 Electric dipole moment . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.2 Magnetic dipole moment . . . . . . . . . . . . . . . . . . . . . . . . . 90
B Diamagnetic current sum rule 93
C Equivalence between the diamagnetic current sum rule and CSGT 97
D Gauge-origin independence of circular dichroism 99
D.1 Equivalence between ˜
G(ω)and G(ω).................. 99
D.2 Independence of rG............................100
D.3 Calculating Tr[G(ω)] within TDCDFT . . . . . . . . . . . . . . . . . 101
D.4 Diamagneticpart.............................103
E Alternative expression for the optical rotation tensor 105
F The Lorentz force density 109