Découverte des polygones réguliers. Pré requis : triangle équilatéral

Découverte des polygones réguliers.
Pré requis : triangle équilatéral, carré, notion de cercle circonscrit (comme étant un cercle
passant par tous les sommets du polygone),
Transformations du collège (symétrie axiale en 6eme
Symétrie centrale en 5eme)
Angles inscrits, angle au centre.
L’utilisation du logiciel CabriGéomètre.
Activité avec un logiciel de géométrie
Partie A :
Ouvrir un fichier cabri et dessiner un polygone régulier à partir de la fonction proposée par le
logiciel.
Décrire ce qu’il se passe.
(placer 1 point,
puis un autre,
puis un nombre est proposé en même temps que le troisième point)
Faire plusieurs figures.
Compter le nombre de côtés des figures obtenues.
Que remarque-t-on ?
(le nombre proposé entre accolades correspond au nombre de côtés)
Cette partie permet la découverte des divers polygones, sans même connaître la définition,
puisque le logiciel en donne directement la forme, mais il est utilisé dans cette partie comme
outil de tracé de figures géométriques .
Partie B :
Choisir un polygone régulier ;
Afficher la distance de chaque coté (entre deux points rouges)
Modifier la figure.
Recommencer avec d’autres polygones.
Que remarque-t-on ?
Refaire le même travail avec l’affichage des mesures des angles.
Cette partie permet la découverte de la définition des polygones réguliers, le logiciel permet
l’affichage des différentes mesures de longueurs et d’angles, ils permet les conjectures sur de
nombreuses figures, de différentes formes et de différentes dimensions.
Partie C : Avec le point situé à l’intérieur de la figure.
Afficher la longueur entre ce point et les différents sommets du polygone.
Afficher les mesures d’angles ayant ce point pour sommet et dont les cotés sont déterminés
par deux sommets consécutifs du polygone)
(sur différents polygone ; et faire varier les longueurs)
que remarque-t-on ?
Tracer le cercle de centre ce point et passant par un sommet du polygone.
Les autres points du polygone sont-ils sur ce cercle ?
Cette partie permet la découverte du centre d’un polygone et de son inscription dans un
cercle.
Le logiciel permet l’affichage des différentes mesures de longueurs et d’angles, ils permet les
conjectures sur de nombreuses figures, de différentes formes et de différentes dimensions.
Il permet aussi de mettre en évidence les invariants :les angles au centre sont égaux.
Démonstration des propriétés observées dans le cas d’un triangle équilatéral
Exercice :
ABC est un triangle équilatéral inscrit dans un cercle de centre O.
Quelle est la mesure des angles de ABC ?
En déduire la mesure de chacun des angles AOB, AOC, BOC.(il manq les notations)
Démonstration des propriétés observées dans le cas d’un triangle équilatéral
d’un carré
Exercice :
ABCD est un carré inscrit dans un cercle de centre O.
Quelle est la mesure des angles de ABCD ?
En déduire la mesure de chacun des angles AOB, BOC, COD, DOA.(il manq les notations)
Démonstration des propriétés observées dans le cas d’un triangle équilatéral
d’un hexagone régulier.
Exercice :
ABCDEF est un hexagone régulier inscrit dans un cercle de centre O.
Que dire des triangles AOB, BOC, COD, DOE, EOF, FOA.
(ils sont isocèles, pour l’instant, et superposables.
Quelle est la mesure des angles de ABC ?
En déduire la mesure de chacun des angles AOB, BOC, COD, DOE, EOF, FOA.(il manq les
notations)
En déduire la nature des triangles AOB, BOC, COD, DOE, EOF, FOA ;(c’est à ce moment
qu’ils sont équilatéraux)
Ainsi les côtés de l’hexagone régulier ont pour longueur le rayon du cercle.
Déterminer alors les mesures des angles de ABCDEF.
Constructions à la règle graduée et au rapporteur,
à la règle non graduée et au compas, d’un triangle équilatéral, d’un carré, d’un
hexagone régulier,
connaissant la longueur d’un côté,
connaissant son centre et un sommet.
Exercices d’applications.
Exercice 1 :
MNPQ est un carré.
ABCDEFGH est l’octogone obtenu ci-contre
avec MA = AB = BN ; NC = CD = DP….
Est-ce un octogone régulier ?
Expliquer pourquoi l’aire de l’octogone est
égale aux sept neuvièmes de l’aire du carré .
Exercice 2 :
ABCDEFGH est un octogone régulier
inscrit dans un cercle de centre O et de
rayon 3 cm.
I est le milieu du coté [AB].
Calculer la longueur AB, arrondie au
millimètre.
Exercice 3 :
Déterminer les axes de symétries et le centre de symétrie,
d’un triangle équilatéral,
d’un carré,
d’un hexagone régulier.
Le logiciel peut à nouveau être utilisé pour retrouver l’invariance de ces figures par certaines
transformations.
1 / 3 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !