Ce cours en PDF

publicité
1 UNITÉS ET DIMENSIONS
Dis-moi comment l’on te cherche, je te dirai qui tu es – Bachelard
Sommaire
1.1
1.2
1.3
Grandeurs physiques et dimensions
1.1.1 Grandeurs physiques . . . .
1.1.2 Notion de dimension . . . .
1.1.3 Équation aux dimensions .
Le Système International d’Unités .
1.2.1 Les unités de base . . . . .
1.2.2 Les unités dérivées . . . . .
1.2.3 Préfixes SI . . . . . . . . .
Analyse dimensionnelle . . . . . . .
1.3.1 Vérifier une formule . . . .
1.3.2 Conversion d’unités . . . .
1.3.3 Modéliser . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
Ce chapitre est accessible en ligne à l’adresse :
http://femto-physique.fr/omp/grandeurs_physiques.php
2
3
3
3
4
5
5
6
7
7
8
9
9
CHAPITRE 1. UNITÉS ET DIMENSIONS
1.1
3
Grandeurs physiques et dimensions
1.1.1 Grandeurs physiques
Une grandeur physique est une quantité qui se rapporte à une propriété et qui peut se mesurer. Or,
mesurer, c’est comparer. C’est comparer à l’aide d’un instrument, une grandeur physique inconnue
avec une grandeur de même nature – on dira de même dimension – prise comme référence que l’on
appelle étalon.
Par exemple, le poids de Miss Univers peut être comparé à celui d’un étalon (1 kg par exemple) à
l’aide d’une balance : le poids de Miss Univers est une grandeur physique. En revanche, sa beauté est
une propriété subjective qui ne peut être mesurée compte tenu qu’il n’existe pas d’étalon de beauté.
En d’autres termes, la beauté se rapporte à l’aspect physique mais ne relève pas de la Physique ; il
ne s’agit pas d’une grandeur physique.
Lors du processus de mesure (mesurage) on effectue donc une comparaison entre un étalon (l’unité)
et la grandeur à mesurer puis l’on traduit le résultat par un chiffre (la mesure) assortie d’un intervalle
définissant un certain niveau de confiance (l’incertitude) ainsi que l’unité 1
X = xm ± x unité
La détermination de la mesure et de l’incertitude fait l’objet d’un autre chapitre. Ici on s’intéresse
au contenu dimensionnel des grandeurs physiques et du choix de l’unité.
1.1.2 Notion de dimension
En général, le résultat d’une mesure dépend de l’étalon utilisé. Par exemple, si l’on compare la
longueur ¸ d’une règle de 1 m avec un décimètre, on obtient ¸ = 10 dm. Si l’on choisit un double
décimètre comme étalon de mesure, on trouve ¸ = 5 ddm (double décimètre). La mesure est donc
différente (5 , 10) : on dit que la longueur possède une dimension.
Par définition, une grandeur physique G a une dimension si sa mesure dépend du choix de l’étalon
de mesure. Sa dimension est notée [G].
Il ne faut pas confondre cette notion avec l’unité qui est purement conventionnelle alors que la
dimension est une propriété indépendante de tout système d’unités.
Deux grandeurs ont même dimension si on peut les comparer. C’est pourquoi le rayon d’un cercle et
son périmètre ont même dimension, car je peux en faire la mesure avec le même étalon (par exemple
un fil souple d’une certaine longueur). Ici il s’agit de la dimension [longueur].
Il existe également des grandeurs physiques sans dimension (on dit aussi adimensionnées). Dans
ce cas la dimension est noté [G] = 1. Par exemple, l’angle ◊ d’un secteur AOB est une grandeur
que l’on peut mesurer comme suit : traçons un cercle de centre O et de rayon r. Les droites (OA)
1. L’unité est indispensable ! Exprimer le résultat d’un calcul ou d’une mesure sans préciser l’unité n’a aucun sens.
CHAPITRE 1. UNITÉS ET DIMENSIONS
4
)
et (OB) coupent le cercle en deux points A’ et B’. L’angle se mesure en faisant le rapport de la
)
longueur d’arc AÕ BÕ et du rayon du cercle.
A Õ BÕ
ש
r
r
O •
• B
B’
A’
◊
• A
On constate donc que si l’on double le rayon du cercle, la longueur d’arc double également de sorte
que l’angle ne dépend pas de la taille du cercle. Il est alors assez évident que si l’on décide de mesurer
les distances en centimètre, en pouce, ou dans n’importe quel système d’unités, le résultat de l’angle
◊ ne changera pas. L’angle est donc sans dimension. De la même manière, une grandeur définie
comme le rapport de deux grandeurs de même dimension, ne présente pas de dimension.
Enfin, par commodité, on a donné un nom spécifique à certaines dimensions
Dimension
Longueur
Masse
Temps
Intensité électrique
Température
Quantité de matière
Symbole
L
M
T
I
⇥
N
1.1.3 Équation aux dimensions
Une loi physique affirme l’égalité de deux grandeurs qui sont nécessairement de même nature. Une
loi physique est donc aussi une relation entre différentes dimensions : on parle d’équation aux
dimensions. Voyons comment obtenir ces équations aux dimensions sur quelques exemples.
La vitesse : d’après la définition vx © dx/dt, on déduit
[v] = LT≠1
L’accélération : la définition ax © dvx /dt donne
[a] =
[v]
= LT≠2
T
La force : en vertu de la deuxième loi de Newton F = ma on a
[F] = MLT≠2
CHAPITRE 1. UNITÉS ET DIMENSIONS
5
La constante des gaz parfaits : on peut obtenir sa dimension à partir de la loi du gaz parfait
pV = nRT .
[p][V ] [F ]
L3
[R] =
= 2 ◊
= ML2 T≠2 ⇥ ≠1 N≠1
[n][T ]
L
N⇥
Le champ magnétique : par définition du champ magnétique, une particule de charge électrique q
æ
≠
æ
≠
æ
≠
≠
≠
se déplaçant à la vitesse æ
v dans un champ magnétique B subit une force F = q æ
v · B , d’où
[B] =
1.2
[F ]
MLT≠2
=
= MT≠2 I≠1
[q][v] IT ◊ LT≠1
Le Système International d’Unités
Comme on l’a déjà dit, mesurer c’est comparer une grandeur physique avec un étalon qui définit
l’unité de mesure. Celle-ci relevant d’un choix arbitraire il faut bien convenir d’un système d’unités
pour pouvoir communiquer (transactions commerciales, rapports scientifiques, etc.). La bonne idée
consiste alors à choisir des étalons dont la définition est indépendante du lieu et du temps et avec
lesquels on peut construire toutes les unités. C’est l’ambition du système d’unités internationales
(SI) adopté par quasiment tous les pays 2 . Né officiellement en 1960, il s’agit d’une extension de
l’ancien système MKSA.
1.2.1 Les unités de base
Le (SI) forme un système cohérent reposant sur sept unités de base (cf. tableau 1.1) indépendants
du point de vue dimensionnel.
Dimension
Longueur
Masse
Temps
Intensité électrique
Température
Quantité de matière
Intensité lumineuse
Symbole
L
M
T
I
⇥
N
J
Unité SI
mètre
kilogramme
seconde
ampère
kelvin
mole
candela
Symbole
m
kg
s
A
K
mol
cd
Table 1.1 – Les sept unités de base du Système Internationale d’Unités.
En attendant une éventuelle révision de ces unités prévue en 2018, nous en donnons ici les définitions
actuelles.
Le mètre est relié à la seconde via l’invariance de la vitesse de la lumière dans le vide. Par définition,
la distance parcourue par la lumière dans le vide pendant une seconde vaut L = 299 792 458 m
2. Trois pays n’ont pas encore adopté officiellement le système métrique : le Libéria, la Birmanie et. . . les Etats-Unis.
CHAPITRE 1. UNITÉS ET DIMENSIONS
6
Remarque : le mètre a connu en deux siècles quatre définitions successives. Initialement, le mètre
était défini à partir de la longueur du méridien terrestre supposé invariable : L = 40 000 km.
Aujourd’hui, avec l’étalon mètre actuel (lié à l’étalon seconde) L = 40 008, 08 km ; la différence est
donc imperceptible pour un utilisateur courant.
Le kilogramme est la masse d’un bloc cylindrique de Platine irridié (90%Pt-10%Ir) conservé au
pavillon de Breteuil (Sèvres) depuis 1889.
Remarque : cet étalon se dégrade par usure et contamination ; c’est pourquoi il est envisagé de
changer de définition du kg et de définir cette unité à partir de la constante de Planck h.
La seconde est la durée de 9 192 631 770 périodes de la radiation correspondante à la transition entre
les deux niveaux hyperfins de l’état fondamental de l’atome 133 Cs au repos dans le référentiel
d’étude.
Remarque : initialement la seconde était définie à partir du jour solaire moyen J par la relation
J = 86400 s. Aujourd’hui, avec la définition de l’étalon seconde, on a J = 86400, 003 s.
L’ampère est défini à partir de la force magnétique de Laplace et permet d’établir à 10≠7 près
les principaux étalons du domaine électrique. Un ampère est l’intensité du courant qui fait
apparaître une force de 2.10≠7 N entre deux conducteurs filiformes rectilignes infinis distants
de 1 m, parcourus par ce courant électrique.
Remarque : cette définition fixe les valeurs de la perméabilité magnétique et de la permittivité du
vide à
1
µ0 = 4fi.10≠7 H.m≠1 et ‘0 =
µ0 c2
Notez qu’il est prévu de redéfinir l’ampère à partir de la charge de l’électron e ce qui aura pour
effet de fixer la valeur de e mais de rendre à µ0 et à ‘0 leur statut de constantes expérimentales.
Le kelvin se rapporte à la loi du gaz parfait. Par définition du kelvin, la température d’un gaz
parfait en équilibre avec l’eau dans ses trois états (le point triple de l’eau) vaut 273, 16 K.
Remarque : la future définition du kelvin fixera la valeur de la constante de Boltzmann kB .
La mole est la quantité d’atomes contenue dans 12 g de carbone 12.
Remarque : l’imprécision de cet étalon est donc liée à celle de la masse. Pour pallier cet inconvénient,
il est envisagé de définir la mole en fixant la valeur du nombre d’Avogadro.
La candela est l’unité donnant l’intensité lumineuse d’une source dans une direction donnée. Par
définition, 1 cd est intensité lumineuse d’une lumière verte de fréquence ‹ = 540.1012 Hz
1
rayonnant
W.sr≠1 .
683
1.2.2 Les unités dérivées
Les sept unités de base du système international sont les « unités fondamentales » à partir desquelles
sont obtenues par combinaison toutes les autres unités, dites unités dérivées. Certaines d’entre-elles
CHAPITRE 1. UNITÉS ET DIMENSIONS
7
se sont vues attribuer un nom qui rappelle une personnalité scientifique :newton, pascal, joule, volt,
tesla, henry etc.
Grandeur
Unité SI
aire
volume
masse molaire
masse volumique
fréquence
vitesse (scalaire)
vitesse angulaire, pulsation
accélération (scalaire)
force d’interaction
puissance mécanique
m2
m3
kg.mol≠1
kg.m≠3
Hz (hertz)
m.s≠1
rad.s≠1
m.s≠2
N (newton)
W (watt)
Grandeur
Unité SI
énergies
pression
tension
charge électrique
résistance électrique
champ électrique
conductance électrique
capacité électrique
inductance
champ magnétique
J (joule)
Pa (pascal)
V (volt)
C (coulomb)
⌦ (ohm)
V.m≠1
S (siemens)
F (farad)
H (henry)
T (tesla)
Il peut donc y avoir différentes façons d’exprimer la même unité.
Exemple : la pression s’exprime en pascal (Pa) dans le système international. Etant donné que la
pression représente une force par unité de surface on peut aussi l’exprimer en N/m2 . Par ailleurs,
on sait d’après l’équation aux dimensions F = MLT≠2 , que 1 N = 1 kg.m.s≠2 d’où l’on déduit
1 Pa = 1 N.m≠2 = 1 kg.m≠1 .s≠2
Remarque : il existe une dernière classe d’unités qu’on appelle unités supplémentaires. Cette
classe contient deux unités sans dimension : le radian (rad), unité de l’angle plan, et le stéradian
(sr), unité d’angle solide.
1.2.3 Préfixes SI
Enfin, on utilise parfois des préfixes multiplicateurs pour remplacer les puissances de 10 :
1.3
Valeur
Préfixe
Symbole
10≠18
atto
a
10≠15
femto
f
10≠12
pico
p
10≠9
nano
n
10≠6
micro
µ
10≠3
milli
m
10≠2
centi
c
10≠1
déci
d
Valeur
Préfixe
Symbole
10
déca
da
102
hecto
h
103
kilo
k
106
Mega
M
109
Giga
G
1012
Tera
T
1015
Peta
P
1018
Exa
E
Analyse dimensionnelle
Analyser le contenu dimensionnel d’une relation permet de rendre bien des services. En voici un
petit tour d’horizon ...
CHAPITRE 1. UNITÉS ET DIMENSIONS
8
1.3.1 Vérifier une formule
Une loi physique impose une contrainte qui n’existe pas en mathématique ; elle doit être homogène,
c’est-à-dire constituée de termes de même dimension. Sommer deux grandeurs de dimension différente
n’a aucun sens en physique. Ainsi pour vérifier une loi physique, la première chose à faire est de
vérifier l’homogénéité !
Toute formule inhomogène est nécessairement fausse.
On retiendra quelques règles :
¶ dans sin x, cos x, ex , ln x et log x la grandeur x doit être sans dimension ;
¶ dans 1 + x, la grandeur x doit être sans dimension ;
¶ dans 1 + x/y, les grandeurs x et y sont de même dimension.
Exercice
La période d’oscillation d’un pendule simple dépend de sa longueur ¸, du champ de pesanteur g
et de l’amplitude angulaire ◊max des oscillations. On propose plusieurs formules ; préciser quelles
sont les formules inhomogènes :
⇤ T = 2fi
⇤ T = 2fi
Ú
Ú
¸ + ◊max
g ≠ ◊max
⇤ T = 2fi
¸
⇤ T = 2fi
g◊max
Ú 3
¸
g
Ú 1
◊max 2
1+
16
¸
◊max
1+
g
¸
4
2
Bien entendu, cela ne signifie pas qu’une formule homogène soit forcément exacte, mais cela permet
déjà de trier ce qui n’a aucun sens physique de ce qui peut en avoir. De manière générale, l’analyse
dimensionnelle est un outil de réfutation, pas de validation.
Remarque : Il faut prendre garde à certaines formules qui mélangent expressions numériques et
littérales. Par exemple, le pH d’une solution acido-basique diluée est souvent défini par
Ë
pH = ≠ log H3 O+
È
Or la concentration n’est pas sans dimension ce qui suggère que cette formule est inhomogène. En
réalité cette formule n’obéit pas à la règle élémentaire qui veut que toute relation soit indépendante
du système
En effet, dans la formule qui donne le pH, il est sous entendu qu’il faut
# d’unités.
$
exprimer H3 O+ en mol.L≠1 . Si l’on veut donner la relation qui donne le pH quel que soit le
système d’unités on écrira plutôt
#
$
H3 O+
pH = ≠ log
c¶
où c¶ désigne la concentration standard. Dans le SI, c¶ = 1000 mol.m≠3 mais si l’on décide
d’exprimer les concentrations en mol.L≠1 , on a c¶ = 1 mol.L≠1 et dans ce cas la tentation est
grande de faire disparaître cette constante par commodité. Mais cela ne doit pas nous faire oublier
sa présence.
CHAPITRE 1. UNITÉS ET DIMENSIONS
9
1.3.2 Conversion d’unités
L’équation aux dimensions étant indépendante du système d’unités, elle est très utile quand il faut
convertir une unité d’un système vers celle d’un autre système.
Exemple : Dans le Système International, la force s’exprime en newton alors qu’elle s’exprime en
dyne dans le système CGS (cm, gramme, seconde). Combien de newton vaut 1 dyne ?
L’équation aux dimensions [Force] = MLT≠2 doit être vérifiée dans tout système d’unités. On a
donc
1 newton = 1 kg.m.s≠2 et 1 dyne = 1 g.cm.s≠2
Ainsi on en déduit la conversion :
1 newton = 105 dynes
1.3.3 Modéliser
L’analyse dimensionnelle permet de prévoir la forme d’une loi si l’on sait quels sont les paramètres
pertinents du problème.
Supposons par exemple que nous cherchions à exprimer une grandeur G en fonction de 2 paramètres
pertinents indépendants p1 et p2 . La méthode consiste alors à trouver comment multiplier p1 et p2
pour former une grandeur de même dimension que G. On écrit donc
G = Cte p1 – p2 —
où – et — sont des facteurs que l’on détermine grâce à l’équation aux dimensions. Une fois ces
constantes déterminées, on peut proposer la forme générale de la loi recherchée.
Exemple : période d’oscillation T d’un pendule simple
On suppose que la période T dépend de la masse m, du champ de pesanteur g et de la longueur ¸
du pendule : T = f (m, g, ¸). On écrit alors
T = Cte m– g — ¸“
où Cte est un facteur adimensioné. Cela nous donne l’équation aux dimensions
T = M– L“+— T≠2—
La loi devant être homogène on doit poser – = 0, — = ≠1/2 et “ = 1/2. La forme générale est
donc
Û
¸
T = Cte
g
Attention, ce n’est pas parce que l’on trouve une loi qu’elle est juste ! L’analyse dimensionnelle nous
dit simplement que la loi est correcte en termes de dimension. C’est à l’expérience de confirmer ou
d’infirmer l’analyse. Par exemple, dans le cas du pendule, supposer comme nous l’avons fait, que la
CHAPITRE 1. UNITÉS ET DIMENSIONS
10
période du pendule ne dépend pas de l’amplitude des oscillations est en contradiction avec les faits 3 .
Il faut alors introduire l’amplitude ◊0 des oscillations dans l’analyse dimensionnelle :
T = f (m, g, ¸, ◊0 )
d’où l’équation aux dimensions
=∆
T = Cte m– g — ¸“ ◊0 ”
T = M– L“+— T≠2—
identique à la précédente. On trouve donc les mêmes résultats (– = 0, — = ≠1/2 et “ = 1/2) et ”
peut prendre des valeurs quelconque. En d’autres termes on peut écrire la période ainsi
Û
¸
T=
(a0 + a1 ◊0 + a2 ◊0 2 + . . . + ap ◊0 p + . . .)
g
où les exposants peuvent être quelconques de sorte que la forme la plus générale est
Û
¸
T=
f (◊0 )
g
Notez que l’analyse dimensionnelle ne permet pas de déterminer complètement la loi recherchée.
Dans le meilleur des cas, une constante adimensionnée est à déterminer de façon empirique.
3. On peut montrer que cette propriété n’est correcte que si les angles sont petits.
Téléchargement