Université des Sciences Sociales de Toulouse
Année universitaire 2009 - 2010
Licence d’Économie 2eAnnée
Microéconomie 2.2
TD N°3 - B
L’oligopole
B - L’oligopole non-coopératif
Exercice 1 (Un duopole de Cournot symétrique)
Soit un oligopole composé de deux firmes, la firme 1 et la firme 2, produisant un bien
homogène. Les deux firmes ont une fonction de coût identique : c(yi) = y2
i, pour i= 1,2.
La demande de marché dépend de la quantité totale de bien sur le marc ; la fonction de
demande inverse est de la forme : p(y1+y2) = 10 (y1+y2). On s’intéresse ici à l’équilibre
de Cournot : les deux firmes décident de leur output simultanément.
1. Quels problèmes d’optimisation la firme 1 et la firme 2 résolvent-elles respectivement ?
2. Déterminer l’équilibre de Cournot (prix pC, quantités yC
1,yC
2). Quels sont les profits
(πC
1,πC
2) des firmes à l’équilibre ? Commenter.
3. La concurrence parfaite. Les pouvoirs publics estiment que ce marché n’est pas suffi-
samment concurrentiel et décident de réguler le duopole. Chaque firme devra renoncer
à son pouvoir de marché et choisir le volume de production correspondant à l’équilibre
de concurrence parfaite. Déterminer ces quantités (y
1,y
2), le prix du marcpet les
profits des firmes (π
1,π
2). Commenter.
1
Exercice 2. (Lien entre l’équilibre de Cournot et la concurrence parfaite)
On considère un marché sur lequel interviennent Nfirmes identiques. Elles produisent
toutes le même bien et ont la même fonction de coût. Cette fonction, pour une firme quel-
conque i, est donnée par C(yi) = y2
i+ 10yi, où yidésigne la quantité produite par la firme i.
La demande du marché est donnée par la relation p(Y) = Y+ 20, où Ydésigne la quantité
totale produite : Y=PN
i=1 yi.
1. On suppose que la concurrence entre les firmes est de type Cournot. Déterminer la
quantité d’équilibre yC
i, le prix d’équilibre pCet le profit d’équilibre πC
ide chaque
firme i.
2. Comment varient les valeurs obtenues dans la question précédente lorsque Ntend vers
l’infini ? Commenter.
Exercice 3 (L’équilibre de Stackelberg dans un modèle de Cournot symétrique )
Nous reprenons l’énoncé de l’exercice 1 mais nous supposons désormais que les deux
entreprises décident de leur niveau de production séquentiellement : la firme 1 choisit d’abord
son niveau d’output y1et ne le modifie plus. La firme 2 observe y1et décide ensuite de son
niveau de production y2.
1. Quels problèmes d’optimisation la firme 1 et la firme 2 résolvent-elles respectivement ?
Comment peut-on qualifier respectivement la firme 1 et la firme 2 ?
2. Déterminer l’équilibre de Stackelberg (prix pS, quantités yS
1,yS
2). Quels sont les profits
πS
1et πS
2des firmes à l’équilibre ? Commenter.
3. Question indépendante : est-il possible qu’un leader obtienne dans un équilibre de
Stackelberg un profit inférieur à celui qu’il obtiendrait dans un équilibre de Cournot ?
Exercice 4 (Un duopole asymétrique)
Soit un duopole constitué des firmes 1 et 2 produisant toutes deux un bien homogène.
La fonction de demande inverse est la suivante : p(y1+y2) = 100 y1y2. Les fonctions de
coût des firmes 1 et 2 sont respectivement : C1(y1) = y2
1et C2(y2)=5y2.
1. Les deux firmes adoptent un comportement de type Stackelberg, la firme 1 étant le
leader et la firme 2 le suiveur. Déterminer les quantités (yS
1,yS
2), le prix (pS) et profits
d’équilibre (πS
1,πS
2).
2. Les deux firmes adoptent un comportement de type Cournot. Déterminer les quantités
(yC
1,yC
2), le prix (pC) et profits d’équilibre (πC
1,πC
2). Comparer avec l’équilibre de
Stackelberg.
Exercice 5 (Barrière à l’entrée)
Soit le marché d’un bien dont la fonction de demande inverse est p(Y)=3Y, où Y
désigne la demande totale. Deux firmes, les firmes 1 et 2, sont en concurrence sur ce marché.
2
Elles ont respectivement pour fonctions de coût :
C1(y1) = y2
1
et
C2(y2) = 3
4+1
3y2
2si y2>0
0si y2= 0 .
1. Dans cette question, on suppose que les firmes décident simultanément de leur volume
de production.
(a) Déterminer les fonctions de réaction f1(y2)et f2(y1)de chacune des firmes et les
représenter dans le repère (O, y1, y2).
[Attention, une firme ne produit que si son profit est positif ou nul ; par souci
de commodité, on supposera même dans cet exercice qu’une firme ne produit que
si son profit est strictement positif.]
(b) Déterminer les quantités (yC
1,yC
2), le prix du marché (pC) et les profits des firmes
(πC
1,πC
2) à l’équilibre de Cournot. Représenter graphiquement l’équilibre dans le
repère (O, y1, y2).
2. On suppose dans cette question que les firmes ne prennent plus les décisions simultané-
ment, mais que la firme 1 fixe son volume de production avant la firme 2. Déterminer les
quantités (yS
1,yS
2), le prix du marché (pS) et les profits (πS
1,πS
2) des firmes à l’équilibre
de Stackelberg. Commenter le résultat (s’aider du titre de l’exercice...).
Exercice 6 (Duopole en prix avec biens légèrement différenciés)
Sur un marché de duopole, deux entreprises, “Acoustic Research” et “B&W”, produisent
des chaînes hi-fi. Leurs coûts sont respectivement CA(yA) = y2
Apour Acoustic Research
et CB(yB) = 2y2
Bpour B&W. Elles produisent des biens différenciés, et bénéficient donc
chacune d’une demande propre. La demande qui s’adresse à Acoustic Research est donnée
par : yA(pA, pB) = 1003pA+2pB, et celle qui s’adresse à B&W est donnée par yB(pA, pB) =
100 + pA2pB.
1. Au vu de la forme des fonctions de demande, comment les deux biens sont-ils perçus
aux yeux des consommateurs ?
2. Les deux firmes sont supposées fixer leur prix simultanément. Déterminer les fonctions
de réaction du duopole et les représenter dans le repère (O, pA, pB).
3. Déterminer l’équilibre : prix ¯pAet ¯pB, quantités ¯yAet ¯yB, et profits ¯πAet ¯πB.
Exercice 7 (Leadership en prix avec frange concurrentielle)
Soit le marché d’un bien homogène produit par une grande entreprise (le leader) et 100
petites entreprises qui individuellement ne peuvent influencer la position du leader. Le leader
décide d’abord de son prix de vente. Les autres firmes sont trop petites pour influencer ce prix,
3
donc elles le prennent comme donné : on dit qu’elles forment une “frange concurrentielle”.
Le leader est conscient de sa position dominante, aussi, connaissant les fonctions de coût
des petites firmes, il est en mesure d’anticiper leurs offres. Cela lui permet d’en déduire la
“demande résiduelle” du marché, sur laquelle il peut compter pour écouler sa production.
Remarque. On peut noter qu’il ne s’agit pas à proprement parler d’un modèle de “concur-
rence en prix”, car les décisions des petites firmes portent sur les quantités et non pas
sur des prix.
La fonction de demande du marché est donnée par Y(p) = 1600 p. Les fonctions de coût
du leader (Cl) et de chaque petite firme (Cp) sont respectivement Cl(yl)=0,25y2
l+ 100ylet
Cp(yp) = 50y2
p+ 100yp. Le leader a des coûts de production moins élevés du fait de sa taille
plus importante.
1. Déterminer la fonction d’offre yp(p)d’une petite firme, et en déduire l’offre agrégée
Yp(p)de la frange concurrentielle.
2. En déduire la fonction de demande résiduelle yR(p)que la firme dominante prend en
compte. La représenter graphiquement. Ecrire son profit en fonction de p. En déduire
l’équilibre de ce marché.
4
1 / 4 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !