K L |K|/|L|K/L
K, L, M f :K→L
g:K→M L ∪KM L tM
f(x)g(x)x∈K
f:|K|→|L|g:|K| → |M|
|L|∪|K||M|= (|L|t|M|)/∼f(x)∼g(x)x∈ |K|LtM→L∪KM
|L| t |M|→|L∪KM|
ψ:|L| ∪|K||M|→|L∪KM|ψ K
K L f, g
|K|
|L| |M|f
g|L| ∪|K||M|
σ n
{0, . . . , n}σ σ
{0, . . . , n}
(A0, . . . , An) [A0, . . . , An]
K n K Cn(K)
n
(A0, . . . , An)∼(ϕ)(Aϕ(0), . . . , Aϕ(n))ϕ{0, . . . , n}(ϕ)
Cn(K)Z
n
K
dn:Cn(K)→Cn−1(K)
dn([A0, . . . , An]) =
n
X
i=0
(−1)i[A0,..., ˆ
Ai, . . . , An]
[A0,..., ˆ
Ai, . . . , An]n−1Ai
dn◦dn+1 :Cn+1(K)→Cn−1(K)C−1={0}
d0= 0
dndndn+1
dn
Hn(K) = Ker(dn)/Im(dn+1)H∗(K)
(Hn(K))n≥0
f:K→L Cn(f) : Cn(K)→Cn(L)
Cn(f)([A0, . . . , An]) = [f(A0), . . . , f(An)] f(A0), . . . , f(An)
0f d dn+1 ◦Cn+1(f) = Cn(f)◦dn+1
f