Radical hilbertien et tour localement cyclotomique

`
K
` K
K(rK, cK)
KcZ`K
 Kc
K
 K Kc
 K=nNK(n)
K Kc
= (K)cK
[K:K]Kc
=K= (K)cK
K 
KH
K
 KH
 K
K 
K K K/K
G= Gal(Kc
/K)KZ`Kc
KH2(G, F`)
ΛK/NK/K (e
EK)R`
KRK=Z`K× K×
ΛK={x∈ RK/x e
J`
Ke
UK}Ke
EK
K
Gal(K/K)
Gal(K/K)
Gal(K/K)
d`f
CK+rK+cK+δ d`f
CKf
CKδ1
K 0
 K
pK Kp
RpK×
pRp= lim
K×
p/K×
p
`n
e
UpRp
Z`Kpp
e
Up
Kp p e
Up
 Kp
Z`[Kp:Q`]
pe
UpUpRpp|
pe
UpRp
JkQres Rp
(xp)p
Up
e
UKe
Up
JKRK=Z`K×
e
EK=RKe
UK
K
Z`rK+cK
rKK cK
Z`KcK
e
JKe
JKJK
Klc  K
Klc
pKlc pZ`
Kc
pKpKlc
K Kc
Klc RKe
Uk
Gal(Klc/Kc)'e
JK/RKe
UK
f
CK=e
JK/e
UKRK
 K
K
ΛK=RKe
UKJ`
K=RKe
UKe
J`
KΛK/R`
K
K 
RK/R`
K
ζ, x
p
K0=K Kn+1
Knf
CKn
Klc
nγ.c γ
Gal(Klc
n/Kn)Gal(Kc
n/Kn)'Z`c
f
CKn'Gal(Klc
n/Kc
n)K=nNKn
[K:K]
K
F F
K 
KZ`
Kc
K/k PK
eeP(K/k) = [KP:KPkpc
Qp]
P|p|pc
Qpˆ
Z QpZq
Qpq
PK/k K/k
Gal(KP/kpkpc
Qp)
PK/k e
IP(K/k)e
Ip(K/k)
Gal(K/k)
e
fP(K/k) = [KPkpc
Qp:kp] = [KP:kp]/eeP(K/k)
eeP(K/k)e
fP(K/k) [KP:kp]
e
Up
Up
e
Ip(K/k)
[e
Ip(K/k),Gal(Kp/kp)] .
k K/k
pk Kpkp
K k DpKp/kpe
Ip
[Dp, Dp] = [Dp,e
Ip]
Dp/e
Ip
¯
K K
¯
K K ¯
G= Gal( ¯
K/K)H
¯
Gp
¯
Ke
Ip(¯
K/K)¯
Kp/Kc
p
p¯
K/K
H¯
G H
Klc
=Kc
L=Klc
=Kc
G= Gal(L/K)F¯
K[¯
G, H]
F/K
K
Kc
K
L¯
K
• •
[¯
G, H]
H
F
G
¯
G
ΛK
1e
EK
e
E`
KNK/K (e
EK)ΛK
R`
KNK/K (e
EK)`f
CK1.
x=uy`ΛKue
Ukye
JKy
`f
CKf
CK
1ZZF`1
1H2(G, Z)`H2(G, F`)H1(G, Z)[]1.
`H1(G, Z) = `Gab '`Gal(Klc/K)'`f
CK.
H2(G, Z)
F
Z`FcFnFc/F Fn
FcnFΓnFn/F
ΓFc/F NFc/F (e
EFc)e
EF
Fc/F
NFc/F (e
EFc) = \
n
NFn/F (e
EFn)
F
e
EFF F c/F
e
EF=NFc/F (e
EFc)
n > 0 Γn
e
EFnΓnFn/F
|ˆ
H0n,e
EFn)|=|H1n,e
EFn)|
F FnFn/F
H1n,e
EFn)
e
EF/NFn/F e
EFn=ˆ
H0n,e
EFn) = 1
1
F
K Gn= Gal(Fn/K)G= Gal(Fc/K)
lim
n
ˆ
H1(Gn,e
CFn)'lim
n
ˆ
H1(Gn,CFn),
CFn=JFn/RFne
CFn=e
JFn/RFn
Fn
lim
n
CFn'lim
ne
CFn.
CFn/e
CFn'Gal(Fc/Fn)CFn+1 /e
CFn+1
CFn/e
CFnGal(Fc/Fn+1)Gal(Fc/Fn)Gn
e
CFnCFn
1lim
ne
CFnlim
n
CFnlim
n
CFn
e
CFn
= 1
CFce
CFcCFne
CFn
ˆ
H1(G, e
CFc)
ˆ
H1(Gn,e
CFc) := lim
ˆ
H1(Gn,e
CFn) = lim
NFn/F e
CFn/IGn(e
CFn).
ˆ
H1(Gn,CFc)CFce
CFcG
ˆ
H1,CFc) = lim
ˆ
H1(Gn, Nn(CFc)),
Nn(CFc) := TmnNFm/Fn(CFm)
ˆ
H1,e
CFc) = lim
ˆ
H1(Gn, Nn(e
CFc)).
lim
ˆ
H1(Gn, NnCFc)'lim
NFn/F NFc/Fn(CFc)/lim
IGnNFc/Fn(CFc).
1 / 9 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !