1 4
1 8 S P
M
32
P(S= 2) = P(S= 12) = 1/32 P(S= 3) = P(S= 11) = 1/16
P(S= 4) = P(S= 10) = 3/32
P(S= 5) = P(S= 6) = P(S= 7) = P(S= 8) = P(S= 9) = 1/8
P(P= 1) = P(P= 5) = P(P= 7) = P(P= 9) = P(P= 10) = P(P= 14) = P(P=
15) = P(P= 18) = P(P= 21) = P(P= 28) = P(P= 32) = 1/32
P(P= 2) = P(P= 3) = P(P= 16) = P(P= 24) = 1/16
P(P= 4) = P(P= 6) = P(P= 8) = 3/32 P(P= 12) = 1/8
P(M= 1) = 1/32,P(M= 2) = 3/32 P(M= 3) = 5/32
P(M= 4) = 7/32 P(M= 5) = P(M= 6) = P(M= 7) = P(M= 8) = 1/8
U[0,1] log U
P(log U0) = 0 x0
P(log Ux) = P(Uexp(x)) = 1 exp(x).
1
log U1
X θ c > 0
cX
x
P(cX x) = P(Xx
c) = 1exp θx
c [0,+[(x).
θ
ccX
θ
c
X, Y, Z NX Y
f:NN
f(X)f(Y)X+Z Y +Z
f(X)f(Y)
kN,P(f(X) = k) = P(Xf1({k})) = P(Yf1({k})) = P(f(Y) = k).
X+Z Y +Z
P(X= 0, Y = 1, Z = 2) = 1/2,P(X= 1, Y = 0, Z = 5) = 1/2.
X Y P(X+Z= 2) = 1/2P(Y+Z= 2) = 0
TNn, m 0
P(Tn+m) = P(Tn)P(Tm).
T
SRa, b 0
P(S > a +b) = P(S > a)P(S > b).
S
nP(Tn) = P(T1)n
n0n0P(T=n) = P(Tn)P(Tn+ 1) =
P(T1)n(1 P(T1)) TP(T1)
t:= P(S > 0) t=t2t= 0
S
P(S > 0) = 0
t= 1 S
L(x) := log P(S > x)
x > 0P(S > x)>0
nNL(nx) = nL(x)m1
x0=x/m P(S > x0)>0
P(S > x)>0L(x/m) = L(x)m L(nx/m) = L(x)n/m
r L(rx) = rL(x)
L r
P(S > rx) = P(S > x)rx S
θ=log P(S > 1)
n
p
k Xk1
nk + 1 n(k+ 1) Xk
Leb
Ra, b Ra < b ]a, b[ba
xRxbxc
bxc ≤ x < bxc+ 1 {x}=x− bxcx
([0,1[,B[0,1[,Leb)n1
Xn
x[0,1[, Xn(x) = b2{2n1x}c.
X1, X2, X3[0,1[ R
Xnn1
n1ε1, . . . , εn∈ {0,1}a=Pn
k=1 2kεkb=
a+ 2n
{x[0,1[: X1(x) = ε1, . . . , Xn(x) = εn}= [a, b[.
(X1, . . . , Xn){0,1}n
(Xn)n1([0,1[,B[0,1[,Leb)
[0,1] {x
[0,1[: Xn(x) = ε}n1ε∈ {0,1}
x[0,1[ b2xc=[1/2,1[(x)
Xn
X1=[1/2,1[, X2=[1/4,1/2[[3/4,1[, X3=[1/8,1/4[[3/8,1/2[[5/8,3/4[[7/8,1[.
n1P(Xn= 1) = P(Xn= 0) = 1/2
n1 [0,1[2nIk= [k2n,(k+1)2n[k= 0,...,2n1
x[0,1[ k x Ik
k=: 2i2n1x[i, i +1
2[{2n1x} ∈ [0,1
2[Xn(x) = 0
k=: 2i+ 1 2n1x[i+1
2, i + 1[ {2n1x} ∈ [1
2,1[ Xn(x) = 1
2n1Ikk k
Ik2n
x[a, b[k1kn
2k1x[2k1a, 2k1b[
2k1a= 2k2ε1+· · · + 21εk2+εk1+21εk+· · · + 2k1nεn=: En
k(x)+21εk+Rn
k(x)
En
k(a) 0 Rn
k(a)1
22k1n
b En
k(b) = En
k(a) 2k1nRn
k(b)1
2
ax<b 2k1x[εk/2,(1 + εk)/2[ Xk(x) = εk
ε1, . . . , εna b
[a, b[{x[0,1[: X1(x) = ε1,...Xn(x) = εn}
ε1, . . . , εn[a, b[
x[0,1[ X1(x) = ε1,...Xn(x) = εn}
[a0, b0[a0=Pn
k=1 2kε0
k(ε1, . . . , εn)6= (ε0
1, . . . , ε0
n)
[a0, b0[⊂ {x[0,1[: X1(x) = ε1,...Xn(x) = εn}
x
ε1, . . . , εna=Pn
k=1 2kεkb=a+ 2n
{x[0,1[: X1(x) = ε1,...Xn(x) = εn}= [a, b[.
Xk
P(X1=ε1,...Xn=εn)=2n.
n
(Xk)k1([0,1[,B[0,1[,Leb)
{x[0,1[: Xn(x) = ε}
B[0,1[
[0, c[c]0,1[
[0, c[c]0,1[
c]0,1[ x[0, c[
n ε1, . . . , εna=Pn
k=1 2kεkb=a+ 2n
ax<bc.
n2n=ba < c x
ax b c ε1=
X1(x), . . . , εn=Xn(x)x[a, b[
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !