Classe de spécialité maths TS Jeudi 9 décembre 2004
Devoir numéro 6
Exercice 1) (Bac S, France, 1999, 10 points)
Pour tout entier naturel n, on considère les nombres
4 10 1
n
n
a 
,
2 10 1
n
n
b 
,
2 10 1
n
n
c 
.
1. Calculer
1 1 1 2 2 2 3 3 3
, , , , , , , ,a b c a b c a b c
. Combien les écritures décimales de an et cn ont-elles
de chiffres ? Montrer que an et cn sont divisibles par 3. Montrer que b3 est premier.
2. Montrer que pour tout entier non nul n,
2n n n
a b c
. En déduire la décomposition en
facteurs premiers de a6.
3. Montrer que le pgcd de bn et cn est égal au pgcd de cn et 2. En déduire que bn et cn sont
premiers entre eux.
4. Résoudre dans 2 l’équation
33
1b x c y
.
Exercice 2) (Bac S, Amérique du Sud, 1999, 10 points)
On considère l’équation (E) :
20 9 2bc
où les inconnues b et c appartiennent à .
1. Montrer que si le couple (b0, c0) est solution de (E), alors c0 est pair. Quelles sont les
valeurs possibles du pgcd d de b0 et c0 ?
2. Résoudre l’équation (E).
3. Déterminer l’ensemble des solutions (b, c) de (E) telles que le pgcd de b et c soit égal à 2.
4. Soit r un entier naturel supérieur ou égal à 2. Le nombre entier naturel P défini par :
12
1 2 1 0
...
nn
nn
P a r a r a r a r a
 
a0, a1 an sont des entiers naturels compris entre 0 et r 1, est noté :
1 2 1 0
... r
nn
P a a a a a
cette écriture est dite « écriture de P en base r ». Soit P un nombre entier s’écrivant
et
4
bbaa
(en base 6 et en base 4 respectivement).
Montrer que a + 5 est un multiple de 4 et en déduire les valeurs de a, puis de b et c. Ecrire
enfin P dans le système décimal.
Bonnes fêtes de fin d’année
Nombres premier inférieurs à 100 :
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !