L3 - 2012/2013 - TD 1 Mercredi 19 septembre Mathématiques Discrètes
Exercice 1, Jeux de dés 1
On considère deux dés à six faces, l’un est équilibré, l’autre est truqué.
Question 1crire l’espace de probabilité.
Question 2Quelle est la probabilité de faire un double ? Quelle est la proba-
bilité que la somme des dés soit égale à 7 ?
On lance maintenant trois dés équilibrés.
Question 3Pourquoi obtient t’on plus souvent un total de 10 points q’un total
de 9 points? Commencez par écrire toutes les manières d’obtenir 9 et 10 points
avec 3 dés.
Exercice 2
On considère une famille à nenfants, n2. On appelle Al’événement, la
famille est constituée d’enfants des deux sexes, et Bl’événement au plus une
des enfants est une fille.
Question 4Quel est l’espace de probabilité? crivez les événement Aet B
dans cette espace.
Question 5Calculer P(AB)et P(A)P(B); comparer ces quantités.
Exercice 3, Jeux de dés 2
Nous allons considérer un jeu de dés avec 4 dés à 20 faces chacun. On
considérera ces dés non truqués. A chaque lancer, un nombre de points est
attribué : Si tous les dés ont un résultat différent le nombre de points est nul.
S’il existe une paire, un triplet ou un carré du nombre a, le nombre de points
est égal à a. S’il existe deux paires du nombre aet b(a6=b), le nombre de
points est égal à a+b.
Question 6Quel est l’espace de probabilité, quelle est la distribution de prob-
abilité ?
Question 7Quelle est la probabilité de faire un score nul ?
Question 8Soit aentre 1 et 20. Déterminer la probabilité d’avoir exactement
knombres aparmi les dés lancés.
Soit Xala variable aléatoire valant 1si aapparaît au moins deux fois dans les
lancers et 0sinon.
Question 9Déterminer la loi suivie par Xaet exprimer le gain du jeu à l’aide
de ces variables. Calculer l’espérance du gain.
Question 10 Quelle est la probabilité de faire exactement 8 points ?
On autorise maintenant de relancer une fois entre 0 et 4 dés.
B. Barbot 1 E.N.S. de Cachan
L3 - 2012/2013 - TD 1 Mercredi 19 septembre Mathématiques Discrètes
Question 11 Quelle est la meilleure stratégie après avoir obtenu 11722?
Exercice 4,Penney’s game
Alice et Bob jouent à un jeu sur une séquence de jets d’une pièce. La pièce
tombe sur pile (P) avec probabilité pet sur face (F) avec probabilité 1p. La
pièce est relancée jusqu’à ce que l’un des motifs suivants apparaisse : Si le motif
PPF apparaît, Alice gagne. Si le motif PFF apparaît, c’est Bob qui gagne.
Question 12 Définir l’espace de probabilité.
Question 13 Montrer qu’avec probabilité 1, l’un des motifs apparaît. C’est
équivalent de montrer que la probabilité d’une partie infinie sans gagnant est
nulle.
Question 14 Si vous deviez parier sur un joueur, lequel choisiriez-vous ?
Question 15 Définir l’ensemble des parties gagnantes pour Alice SA, pour Bob
SBet l’ensemble des séquences qui ne comportent pas encore de gagnant N.
On sait que Sa] Sb= Ω. On peut remplacer cette relation ensembliste par
une relation sur des probabilités : x,P(x∈ Sa) + P(x∈ Sb) = 1.
Question 16 Trouver deux autres relations reliant les ensembles SA,SB,N
et les motifs gagnants.
Question 17 Résoudre le système obtenu en remplaçant les relations ensemb-
listes par des relations probabilistes. Conclure sur l’équité du jeu.
Question 18 Trouver une valeur de pqui rende ce jeu équitable.
B. Barbot 2 E.N.S. de Cachan
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !