vraisemblance!C,5!C,6E!@)(55,5G!#763!@,)(H!'765!())7'5!,54%+,3!),5!#`]5!C,5!D@;('4%))7'5!
%'C%>%C6,)5!C('5!'743,! N(5,! CI(223,'4%55(&,G! #763!(>7%3! 6',! %CD,H! '765! ())7'5!CI(N73C!
,E(+%',3!),5!C7''D,5!,'!64%)%5('4!5,6),+,'4!-!C%+,'5%7'5!J2763!276>7%3!),5!>%56()%5,3LH!
+(%5! ,'! 23(4%86,! 7'! >76C3(%4! 64%)%5,3! 4764,5! ),5! C%+,'5%7'5! 2755%N),5! JC7'@! 9T!
C%+,'5%7'5!C('5!'743,!@(5LG!
!
=7+2(37'5! ),5! C,6E! 23,+%B3,5! C%+,'5%7'5! C6! @,2543,! 2763! 4764,5! ),5! C7''D,5!
CI(223,'4%55(&,!0!
!
% Sort training data into sung and unsung frames
ddS = ftrs(labs==1,:);
ddM = ftrs(labs==0,:);
% Compare scatter plots of 1st 2 dimensions
% First with sung frames (red dots) in front:
subplot(221)
plot(ddM(:,1),ddM(:,2),'.b',ddS(:,1),ddS(:,2),'.r')
% then with unsung frames (blue dots) in front:
subplot(222)
plot(ddS(:,1),ddS(:,2),'.r',ddM(:,1),ddM(:,2),'.b')
% Heavily overlapped, but some difference...
!!
:(%'4,'('4H!'765!())7'5!,54%+,3!6',!#`]!@7'4%'6,!563!@,5!C,6E!,'5,+N),5!,'!64%)%5('4!
6'!+D)('&,!C,!a(655%,'',5!?!-!C%+,'5%7'5H!(>,@!),!F(+,6E!()&73%4;+,!V:G!M765!())7'5!
64%)%5,3! ),5! F7'@4%7'5! C,! Netlab! 86%! %+2)D+,'4,'4! ),5! +7CB),5! ,4! +D4;7C,5!
CI(223,'4%55(&,!2763!'765G!
!
#763!64%)%5,3!NetlabH!>765! ()),Q!64%)%5,3!),5!F7'@4%7'5!56%>('4,5G!Y765!C,>,Q!3,&(3C,3!),!
;,)2!C,!@;(86,!F7'@4%7'!2763!>765!F(+%)%(3%5,3!J,G&G!bb;,)2!&++L!
o a++G+!0!=3D(4%7'!C6!+7CB),!C,!+D)('&,!C,!a(655%,'',5!Ja::LG!
o a++%'%4G+!0!*'%4%()%5(4%7'!C6!+7CB),!(>,@!cK:,('5!563!),5!C7''D,5G!
o a++,+G+!0!1)&73%4;+,!V:!2763!a::G!
o a++237NG+!0!=()@6),!C,!)(!237N(N%)%4D!CI6',!C7''D,!563!),!a::!(223%5G!
!
*G Z@3%>,Q!6',!F7'@4%7'!traingmms!86%!23,'C!@7++,!,'43D,!0!
o V'5,+N),!C,5!C,5@3%24,635!
o <,5!)(N,)5!@733,527'C('45!
o V4!6'!,'4%,3!%'C%86('4!),!'7+N3,!C,!a(655%,'',5!2(3!@;(86,!a::!
d6%! (223,'C! C,6E! a::5! 2763! @;(86,! @)(55,! J@;('4D,R'7'K@;('4D,L! ,'! 64%)%5('4! C,5!
F7'@4%7'5!C,!M,4)(NG!<(!F7'@4%7'!%+23%+,!)(!précision!C6!@)(55%F%,63!!,'!2763@,'4(&,!,'!
64%)%5('4!),5!+7CB),5!(223%5!,4!C,5!C7''D,5!CI(223,'4%55(&,!,)),5K+X+,5G!<(!5734%,!C,!)(!
F7'@4%7'!5,3(!),5!C,6E!+7CB),5!a::!(223%5!563!),5!C7''D,5!J5734%,!C,!&++,+L!2)65!)(!
23D@%5%7'!@()@6)D,G!<I,'4X4,!C,!>743,!F7'@4%7'!3,55,+N),3(!C7'@!?!0!
!
[gmS,!gmM,!precision]!=!traingmms!(ftrs,!labs,!nmix)!
!
#763!)(!2(34%,!(223,'4%55(&,H!>743,!F7'@4%7'!C7%4!0!
o =3D,3!C,6E!a::5!J(>,@!F7'@4%7'!gmmL!2763!@;(86,!@)(55,!
o e4%)%5,Q! ‘diag’* @7++,! 437%5%B+,! 2(3(+B43,! J:(43%@,! C,! @7>(3%('@,!
C%(&7'(),L!
o *'%4%()%5,3!@;(86,!a::!(>,@!fK:,('5!,4!),5!C7''D,5!5D2(3D,5!
o :,44,Q!),!'7+N3,!+(E%+()!CI%4D3(4%7'5!?!O!J76!options(14)=5L!