ln[(p-2lp] - (Zlpi*ù - (2lpuù - (Zlpi*ù .- (Zlpç) - Les

inferieur à N. La proportion F de nombres non barrés entre pr2 et pr*r2
e st approximativement :
F :(2 / 3)(4 t s)(6 t 7 )(1 0 t t n)(tz t t3) .. . . . . [$r- 1 /pr],
Lorsque pp est très grand, N-(pr'), et F tend vers l/2ln(ps), c'est à dire
1/ln(I.{) , ce qui est connu depuis Euler et Lavallée Poussin.
Dans une façon d'appliquer cette méthode à la recherche des couples
de premiers dont la somme est égale à N+1, on considère une série de
cases dans lesquelles on écrit, en noir par exemple, la suite des nombres
impairs, 1,2, 3,5 etc., jusqu'à N. Dans les mêmes cases on écrit, en
rouge par exemple, la même série des nombres impairs dans le sens
inverse, c'est à dire 1 rouge dans la case N noir, jusqu'à N rouge dans la
case 1 noir.
Ensuite, on applique à chacune de ces deux suites la méthode de
recherche des nombres premiers indiquée précédemment, dans le sens
croissant pour chaque suite.
A la fin de cette opération, si une case comporte deux nombres non
barrés, ces deux nombres sont premiers, et leur somme est égale à N+1.
La configuration obtenue est symétrique par rapport à (N+1y2.
La possibilité que des cases sans nombres barrés existent quel que soit
N peut être montrée en appliquant la méthode équivalente qui suit.
On barre, de la façon indiquée précédemment, les multiples de 3 des
nombres noirs puis, à la suite, les multiples de 3 des nombres rouges.
Ensuite on barre les multiples de 5 des nombres noirs puis, à la suite, les
multiples de 5 des nombres rouges, et ainsi de suite.
A la fin des éliminations des multiples de 3, il reste dans les cas les
plus défavorables 1 case sur 3 sans nombre barré.
A la fin des éliminations des multiples de 5, il reste dans les cas les plus
défavorables, parmi les cases sans nombre barré après l'opération sur les
multiples de 3, 3 cases sur 5 sans nombre barré
Et ainsi de suite après les éliminations sur chaque série des multiples
des nombres premiers successifs.
Si pu est le nombre premier dont le carré est immédiatement inferieur à
(N+1)/2, la proportion G de cases sans nombres barrés est minimale à
(N+1)/2, et égale à:
G : (L t 3)(3 t s)(s t 7)(e t 1 1 X 1 t I 13).. . . . . . [bt. 2)tpu]
etwln(G): !.ln[(p-2lp] - (Zlpi*ù - (2lpuù - (Zlpi*ù .- (Zlpç),
?=5
: A- g* tztpl
P"E:
p1 étant un premier assez grand pour justifier l'approximation
1 / 1 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !