UNIVERSITE PARIS XI-IFIPS-1ére Année préparatoire 2006-07 12 Février 2007
Mécanique :Interrogation 1
Durée 1h45
Les calculettes sont autorisées et les documents sont interdits. Respectez les notations de l’énoncé. Les 3 exer-
cices sont indépendants
EXERCICE I
Une particule M soumise à un champ électrique et à un champ magnétique est en mouve-
ment dans un référentiel supposé galiléen. Son mouvement est défini dans un repère polaire
par les équations paramétriques :
r(t) = r0ekt (1)
θ(t) = kt (2)
r0et k sont des constantes positives.
1. Déterminer les coordonnées du vecteur
vitesse ~
ven coordonnées polaires puis
sa norme. Reporter la figure ci-contre
sur la copie : représenter ~
vet ses com-
posantes.
2. Calculer l’angle α=( ~
v,~
uρ), et en déduire
qu’il est indépendant du temps.
3. Déterminer le vecteur accélération ~
aen
coordonnées polaires et sa norme.
4. Déterminer les vecteurs ~
utet ~
undu re-
père intrinsèque en fonction des vec-
teurs polaires ~
uρet ~
uθ. En déduire les co-
ordonnées du vecteur accélération dans
le repère intrinsèque ( ~
ut,~
un).
5. Calculer l’angle β=( ~
a,~
un), et montrer qu’il est constant.
6. En procédant comme à la question (1), on tracera ~
adans le repère polaire et dans le
repère intrinsèque.
7. Calculer le rayon de courbure de la trajectoire. En déduire l’allure de cette courbe.
8. Exprimer le déplacement élémentaire ds effectué par M pendant le temps dt, en fonc-
tion de r0et θ. En déduire la distance parcourue lorsque θvarie de θ=0 à θ=2π.
9. Quelles sont à une date lointaine ,t→ ∞, les valeurs de la vitesse, de l’accélération de
OM et de la distance parcourue depuis l’instant initial.
10. Décrire alors le mouvement.
EXERCICE II : Compact-Disc
Une platine CD-audio fait deux tours avant d’atteindre la vitesse angulaire ω=˙
θde 300
tours/mn qui est la vitesse de fonctionnement normal. On admet que l’accélération angu-
laire ˙ωest une constante, C, pendant la phase d’accélération (c’est à dire pendant les deux
premiers tours).
1
2
1. A t=0 s, le CD est à l’arrêt. Ecrire l’équation de la vitesse angulaire en fonction du
temps pendant la phase d’accélération. En déduire l’équation horaire θ(t) si θ(0)=0.
2. Quelle est la durée de cette phase ? Quelle est la valeur de C ?
3. Déterminer les composantes radiale et tangentielle de l’accélération d’un point situé à
4 cm de l’axe de rotation quand la platine a effectué un tour après le démarrage.
4. Que devient l’accélération de ce même point quend la platine a atteint son régime
normal de rotation ?
5. Donner la vitesse et l’accélération en régime normal d’un point situé sur le bord d’un
CD de 12 cm de diamètre .
6. Sur un schéma représenter le vecteur rotation lié à un point M quelconque du CD,
ainsi que la vitesse ~
v. Quelle relation lie le vecteur rotation et la vitesse ~
v?
EXERCICE III : Poursuite navale
Dans un référentiel galiléen R, un premier bateau,A, vogue en ligne droite à la vitesse
constante ~
w. Ce référentiel est muni d’un repère cartésien Oxy, où l’axe Ox est constitué par
la trajectoire de A. Un second bateau, B, poursuit le premier avec une célérité c=20 km/h
évidemment supérieure.
A l’instant t=0, la poursuite commence, le ba-
teau A est au point O et la distance entre les
deux bateaux est r0=500m. Le bateau poursui-
vant, B, choisi de suivre une trajectoire telle
que l’angle, θ0, entre l’axe Ox et AB, reste
constant. On notera r la distance entre les
deux bateaux.
1. Soit R0le référentiel lié au bateau A. Dans R0, le bateau B est repéré par ses coordon-
nées polaires. Déterminer les composantes du vecteur
AB et de la vitesse ~
v0de B dans
le repère ( ~
ur,~
uθ).
2. Donner les composantes de la vitesse ~
wde A dans ce repère en fonction de w=k~
wket
de θ0.
3. En utilisant la composition des vitesses, déterminer les composantes, par rapport à R,
du vecteur vitesse ~
vde B dans le repère ( ~
ur,~
uθ) en fonction de ˙r,wet de θ0.
4. Calculer le carré de la norme de ~
vet en déduire ˙ren fonction de w,θ0et c. Montrer
que :
r(t) = (wcosθ0+qc2w2sin2θ0)t+r0
5. Quelle est la trajectoire de B dans le référentiel R? Dessiner cette trajectoire puis celle
dans R0: on prendra θ0= 3π/4 et c=2w.
6. Déterminer la valeur numérique du temps T que met le bateau B pour rattraper A,
ainsi que la position des bateaux à l’instant de leur rencontre.
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !