K=R C
E K E ν :E→R+
(N1)ν(x) = 0 =⇒x= 0E
(N2)∀x∈E , ∀λ∈K , ν(λx) = |λ|ν(x)
(N3)∀x∈E, ∀y∈E , ν(x+y)≤ν(x) + ν(y)
(E, ν)E ν E
||.|| x∈E||x|| x
R C
Kn, n ∈N∗x= (x1, ..., xn)∈Kn
||x||eucl =¡n
P
j=1
|xj|2¢1/2;||x||∞=max
1≤j≤n|xj|ν+(x) =
n
P
j=1
|xj|
f∈E=C([0,1],C)7→ ||f||∞:= sup
0≤t≤1
|f(t)|E
X F ||f||∞:= sup
t∈X
||f(t)||
B(X, F )X F
E K ||.|| E
||0E|| = 0
¯
¯||x|| − ||y||¯
¯≤ ||x−y|| ,∀x, y ∈E
E6={0E}E
(E, ||.||)
d: (x, y)∈E×E7→ d(x, y) := ||x−y|| E
∀x, y, z ∈E d(x+z, y +z) = d(x, y)||.||
E
Rn
RnC([0,1],C)
E
(E, ||.||)d K
x7→ ||x|| (E, d)
(x, y)7→ x+y(E, d)×(E, d)
(λ, x)7→ λx K ×E
(λ, x)∈K×E7→ λx
τa:x7→ x+a a E hλ:x7→ λx λ
K E E
(λ, x)7→ λx
E=K
A E ∀x, y ∈A , ∀t∈[0,1] : tx + (1 −t)y∈A