Z[i]/(p)'Fp[X]/(X2+ 1) Fp=Z/pZ
pZ[i]X2+ 1 Fp[X]
p
pZ[i]
−1Fp
ϕ:Z[i]/(p)→Fp[X]/(X2+ 1) z
Z[i]/(p)a+ib ϕ(z)a+bX a b
Fp
ϕ a0+ib0z(a−a0)+ i(b−b0)∈(p)
a0+ib0=a+ib + (c+id)p= (a+cp) + i(b+dp)a0+b0X= (a+cp) + (b+dp)X=a+bX
a=a+cp b =b+dp Fp
ϕ z =a+ib w =c+id
ϕ(z+w) = ϕ(z) + ϕ(w)ϕ(z)ϕ(w) = (a+bX)(c+dX) = (ac +bdX2) + (ad +bc)X=
(ac −bd)+(ad +bc)X=ϕ(ac −bd +i(ad +bc)) = ϕ(zw)
ker ϕ= 0 zker ϕ a +ib ϕ(z) = a+bX = 0
Fp[X]/(X2+ 1) a=b= 0 Fpa≡b≡0 mod p a +ib ∈(p)
ϕ=Fp[X]/(X2+ 1) Fp[X]/(X2+ 1) a+bX
0≤a, b < p ϕ(a+ib)
¡pZ[i]¢⇐⇒ ¡Z[i]/(p)¢⇐⇒ ¡Fp[X]/(X2+ 1) ¢⇐⇒
¡X2+ 1 Fp[X]¢
⇐⇒ ⇐⇒ ⇐⇒ ⇐⇒
G n m G
gm= 1 g∈G
G(Z/m1Z)× · · · × (Z/msZ)
m1|m2|. . . |ms
m n m =n G
F∗
p
Xm−1G n
G= (Z/m1Z)×· · ·×(Z/msZ)
n=d1. . . dsm=dsm=n s = 1 d1=m=n G =Z/nZ
mF∗
pF∗
p
Xm−1|F∗
p| ≤ m
m≤ |F∗
p|m=|F∗
p|F∗
p
−1
p= 3,5,7