n= 6 a
b
(a+b)6=a6+ 6a5b+ 15a4b2+ 20a3b3+ 15a2b4+ 6ab5+b6.
sin6(t) = eit eit
2i6
=1
26i6(eit)6+ 6(eit)5(eit) + 15(eit)4(eit)2+ 20(eit)3(eit)3
+ 15(eit)4(eit)2+ 6(eit)5(eit)+(eit)6
=1
64 (e6it +e6it)6e4it +e4it+ 15 e2it +e2it20
=1
64 (2 cos(6t)12 cos(4t) + 30 cos(2t)20)
=1
32 (10 15 cos(2t) + 6 cos(4t)cos(6t)) .
(x+iy)2= 54i x y
x2y2= 5
2xy =4
x2+y2=52+ 42=41
2x2=41 + 5
2y2=41 5
2xy =4
|(x+iy)2|=|15 8i|
41
x y
s41 + 5
2+is41 5
2
54i δ
(1 2i)δ
2et (1 2i) + δ
2.
z=rer z θ
32 = 25= 25e
z5=32 r5e5= 25er5= 25
5θ=π[2π]=r= 2
θ=π
5[2π
5].
S=
2e
5,2e3
5,2e5
5
|{z}
2
,2e7
5,2e9
5
2 3
1
x2x6=1
51
x31
x+ 2.
]3,+[
x7→ ln
x3
x+ 2.
R(2x1)dx=1
2·R2(2x1)1/2dx=1
2·2
3(2x1)3/2
x7→ 1
3(2x1)3/2
[1/2,+[
x7→ xe3xR
0
F:RR
x7→ Rx
0te3tdt.
x F (x)
F(x) = 1
91e3x3xe3x.
x7→ ex
2 + e2xR
F:x7→ Zx
0
et
2 + e2tdt
x u =et
C1du=etdt
F(x) = Zx
0
et
2+(et)2dt=Zex
1
1
2 + u2du
=2
2Zex
1
u
2
1 + u
22du
=1
2arctan u
2ex
1
.
x7→ 1
2arctan ex
2.
x=πu
dx=du
Zπ
0
xf (sin x) dx=Z0
π
(πu) sin(πu)
| {z }
=sin(u)
(1)du
=Zπ
0
(πx)f(sin x) dx
=πZπ
0
f(sin x) dxZπ
0
xf (sin x) dx.
2Zπ
0
xf (sin x) dx=πZπ
0
f(sin x) dx,
2
I
I=Zπ
0
xsin x
2sin2(x)dx=Zπ
0
xf (sin x) dx,
f:u7→ 1
2u2[0,1]
I=π
2Zπ
0
f(sin x)dx=π
2Zπ
0
sin x
1 + cos2(x)dx.
u= cos x
du=sin xdx
I=π
2Z1
1
1
1 + u2du=π
2[arctan(u)]1
1== π2
4.
arctan(1) = π
4=arctan(1)
x]0,1] 2 arctan r1x
x!+ arcsin(2x1) = π
2.()
f:x7→ 2 arctan q1x
xg:x7→ arcsin(2x1)
arctan Rf(x)
x6= 0 1x
x
x−∞ 0 1 +
1x+
x+
1x
x+
f]0,1]
arcsin [1,1] x
12x1102x20x1.
g[0,1]
u:]0,1[ R
+
x7→ 1x
x
=1
x1 et v:R
+R
x7→ x.
u]0,1[ v
R
+vu
]0,1[
x]0,1[ (vu)0(x) = u0(x)·v0(u(x)) = 1
x2·1
2q1x
x
.
2 arctan R
f= 2 arctan (vu) ]0,1[ x
f0(x) = (vu)0(x)·2
1+(vu(x))2
=1
x2·
2
2q1x
x·1
1 + 1x
x
1
x
2rx
1x·
x
1x+x=1
px(1 x).
w:]0,1[ ]1,1[
x7→ 2x1.
w]0,1[ arcsin
]1,1[ g=
arcsin w]0,1[ x
g0(x) = w0(x)·arcsin0(2x1)
=2
p1(2x1)2
=2
p(1 (2x1)) (1 + (2x1))
=1
px(1 x).
f+g
]0,1[ x f0(x)+g0(x) = 0
f+g]0,1[
f(1/2) + g(1/2) = 2 arctan(1) + arcsin(0) = 2 ·π
4+ 0 = π
2.
1
f(1) + g(1) = 2 arctan(0) + arcsin(1) = π
2.
arccos + arcsin
cos a= sin π
2ax[1,1]
cos (arccos(x)) = x= sin π
2arccos(x).
π
2arccos(x)xsin
arccos(x)[0, π]π
2arccos(x)π
2,π
2
π
2arccos(x)π
2,π
2x
π
2,π
2arcsin(x)
arcsin(x) = π
2arccos(x).
u[0,π
2[
fcos2(u)+gcos2(u)
= 2 arctan s1cos2(u)
sin2(u)!+ arcsin 2 cos2(u)1
= 2 arctan (|tan(u)|) + arcsin (cos(2u)) .
u[0,π
2[ tan(u)
arcsin (cos(2u)) = π
2arccos (cos(2u)) = π
22u.
2u[0, π]
fcos2(u)+gcos2(u)= 2 arctan (tan(u)) + π
22u
= 2u+π
22u=π
2
f+g]0,1]
x x = cos(u) [0,π
2[
θ]0, π[
Cn=
n
X
k=0
cosk(θ) cos(kθ), Sn=
n
X
k=0
cosk(θ) sin(kθ) et An=Cn+iSn.
1cos(θ)e= 1 e+e
2e
= 1 e2+ 1
2=1e2
2
=eee
2
=e
2isin θ
2= sin(θ)eiπ
2.
θ]0, π[ sin θ
π
2θ
An=Cn+iSn=
n
X
k=0
cosk(θ) (cos(kθ) + isin(kθ))
| {z }
eikθ
=
n
X
k=0 cos(θ)ek.
|cos(θ)e|=
|cos(θ)| 6= 1 θ]0, π[
An=1cos(θ)en+1
1cos(θ)e=1cos(θ)n+1ei(n+1)θ
sin(θ)ei(θπ
2)
=ei(π
2θ)cos(θ)n+1ei(π
2+)
sin θ.
Cn= Re (An) =
Re ei(π
2θ)cos(θ)n+1Re ei(π
2+)
sin θ
=cos(π
2θ)cos(θ)n+1 cos(π
2+)
sin θ
=sin(θ) + cos(θ)n+1 sin()
sin θ
= 1 + cos(θ)n+1 sin()
sin θ.
Sn= Im (An) = cos(θ)cos(θ)n+1 cos()
sin θ.
n
X
ωUn
ω=
n1
X
k=0
e2ikπ
n=
n1
X
k=0 e2
nk=
1e2
nn
1e2
n
=11
1e2
n
= 0.
zC
(z+ 1)n=znz
(0 + 1)n= 0n1 = 0
(z+ 1)n
zn= 1 z+ 1
zn
= 1.
z+1
zn
k0n1
z+ 1
z=e2ikπ
n.
z+ 1 = ze2ikπ
nz1e2ikπ
n=1.
e2ikπ
n= 1 0 = 1k6= 0
z=1
1e2ikπ
n
=1
eikπ
n2isin
n=ieikπ
n
2 sin
n.
n1z
ie
ikπ
n
2 sin(
n)kJ1, n1K
kJ1, n1Kz=ie
ikπ
n
2 sin(
n)
z=1
1e2ikπ
n
z+ 1 = ze2ikπ
nz+ 1
zn
=e2iknπ
n= 1,
(z+ 1)n=znz
n1ie
ikπ
n
2 sin(
n)
kJ1, n1K
1 / 5 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !