19 janvier 2017 TES
DEVOIR SURVEILLÉ N7
L’utilisation d’une calculatrice est autorisée.Le candidat est invité à faire gurer sur la copie toute trace de recherche ,même
incomplète ou non fructueuse ,qu’il aura développée.Il est rappelé que la qualité de la rédaction, la clarté et la précision des
raisonnements entreront pour une part importante dans l’appréciation des copies.
Exercice 1 1points
On note Aet Bdeux événements. On suppose que :
p(A) = 0,7 ; pA(B) = 0,2 ; et pA(B)= 0,4
Recopiez et complétez l’arbre ci-contre sur votre copie.
A
B
B
A
B
B
Exercice 2 2points
On note Aet Bdeux événements.
1. On donne : p(A) = 0,45 et p(AB) = 0,15. Calculez pA(B).
2. On donne : p(A) = 0,6,p(B) = 0,7et pB(A) = 0,5. Calculez p(AB)puis p(AB).
Exercice 3 4points
L’arbre ci-contre modélise une situation où Aet Bsont
deux événements.
1. Donnez les valeurs de p(A),pA(B)et de pA(B).
2. Recopiez et complétez l’arbre.
3. Calculez P(AB)et P(AB).
4. Calculez p(B)
A
. . .
B
0,9
B
. . .
A
0,3
B
0,6
B
. . .
Exercice 4 4points
Une agence de voyage propose deux durées de séjours, le week-end ou la semaine, et deux types de destinations, France
ou étranger. Parmi les dossiers de l’agence on constate que :
60 % des séjours ont lieu en France ;
45 % des séjours en France durent une semaine ;
75 % des séjours à l’étranger durent une semaine.
On choisit un dossier au hasard et on note :
F l’événement :«Le séjour a lieu en France »;
S l’événement :«Le séjour dure une semaine »;
1. En utilisant les données de l’énoncé, déterminez les probabilités suivantes :p(F) ; pF(S).
2. Il reste une troisième probabilité donnée par l’énoncé ; donnez cette probabilité.
3. Construisez un arbre pondéré adapté à la situation.
4. Calculez la probabilité que le séjour dure un week-end.
Probabilités et suites 1Lycée Guillaume Le Conquérant
19 janvier 2017 TES
Exercice 5 4points
Un élève répond au hasard aux 6 questions indépendantes d’un Q.C.M. Pour chaque question, 4 armations sont proposées
dont une seule est exacte. On note Xest la variable aléatoire égale au nombre de bonnes réponses.
1. Montrez que la loi de probabilité de Xest une loi binomiale dont on précisera les paramètres.
2. Calculez la probabilité d’avoir exactement 3 bonnes réponses. Après avoir donner la valeur exacte,on arrondira le
résultat au millième.
3. Calculez la probabilité d’avoir au moins une bonne réponse. Après avoir donner la valeur exacte,on arrondira le résultat
au millième.
4. Calculez l’espérance mathématique du nombre de bonnes réponses. Interprétez ce résultat.
Exercice 6 5points
Une entreprise du secteur «Bâtiments et Travaux publics »doit réduire la quantité de déchets qu’elle rejette pour respecter
une nouvelle norme environnementale. Elle s’engage, à terme, à rejeter moins de 20 000 tonnes de déchets par an.
En 2010, l’entreprise rejetait 40 000 tonnes de déchets.
Depuis cette date , l’entreprise réduit chaque année la quantité de déchets qu’elle rejette de 5% par rapport à la quantité
rejetée l’année précédente, mais elle produit par ailleurs 200 tonnes de nouveaux déchets par an en raison du développement
de nouvelles activités.
Pour tout entier naturel n, on note rnla quantité, en tonnes, de déchets pour l’année (2010 + n).
On a donc r0= 40 000.
1. (a) Calculez r1et r2.
(b) Justiez que pour tout entier naturel n, on a :
rn+1 = 0,95rn+ 200
2. Soit (sn)la suite dénie pour tout entier naturel npar sn=rn4000.
(a) Démontrez que la suite (sn)est une suite géométrique dont on précisera la raison et le premier terme.
(b) Pour tout entier naturel n, exprimez snen fonction de n.
(c) En déduire que, pour tout entier naturel n,ona:
rn= 36 000 ×0,95n+ 4000.
(d) La quantité de déchets rejetée diminue-t-elle d’une année sur l’autre ? Justiez.
(e) Déterminez la limite de la suite (rn).
(f) Calculez une estimation , en tonnes et à une tonne près, la quantité de rejets en 2018.
3. À partir de quelle année, le contexte restant le même, l’entreprise réussira-t-elle à respecter son engagement ?
Bonus
Une urne contient 10 boules indiscernables : 2 bleues, 5 noires, 3 rouges. On eectue deux tirages successifs sans remise.
Calculez la probabilité de l’événement «tirer une boule bleue au deuxième tirage ».
Probabilités et suites 2Lycée Guillaume Le Conquérant
1 / 2 100%
La catégorie de ce document est-elle correcte?
Merci pour votre participation!

Faire une suggestion

Avez-vous trouvé des erreurs dans linterface ou les textes ? Ou savez-vous comment améliorer linterface utilisateur de StudyLib ? Nhésitez pas à envoyer vos suggestions. Cest très important pour nous !