Rn
`eme
Rn
Rnn
(1,−1,0,0,1 + √2,−1)
n(x1, x2, . . . , xn)
(xi)1≤i≤n
~x = (x1, x2, . . . , xn)
= (y1, y2, . . . , yn)R1
R
C R2
x3x= (x1, x2, x3, x4)`eme
Rnk`eme k`eme
Rn
Rn
(x1, x2, . . . , xn)+(y1, y2, . . . , yn) = (x1+y1, x2+
y2, . . . , xn+yn)p(x1, x2, . . . , xn) = (√x1,√x2, . . . , √xn)
Rn
α(x1, x2, . . . , xn) = (αx1, αx2, . . . , αxn)
αx+βy=α(x1, x2, . . . , xn) + β(y1, y2, . . . , yn) =
(αx1+βy1, αx2+βy2, . . . , αxn+βyn)